基于 MONAI 的 3D 图像分割任务2(Brain Tumour 和 SwinUNETR 训练)


如标题所示,本节就基于 MONAI 库,采用Brain Tumour 的数据集,和 SwinUNETR 网络模型,搭建训练过程。

那么,本节就主要包含了以下部分:

  1. 获取数据过程
  2. 获取模型过程
  3. 构建损失和优化函数
  4. 训练、验证循环
  5. 保持优化后模型到本地

那么,娓娓道来。

一、训练全部代码

monai 提供了很多的算子,可以提供直接使用。可以立即为将原本较为复杂的、自己写的代码进行了封装。所以,就能剩下很多的时间,编写这部分代码。

但是,这就需要去参考官方的库文档,以增加对封装算子的理解。下面对训练部分所需要的代码,合并到一起。

import os
import shutil
import glob
import time
import torch
im
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱多多先森

你的鼓励,是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值