【CV面试】传统图像分割算法汇总

本文介绍了图像分割的基本概念、目的和方法,包括基于阈值、边缘、数学形态学和聚类分析的图像分割技术。每种方法都有其适用场景和优缺点,如阈值分割快速但对噪声敏感,边缘检测精确但可能产生伪边缘,数学形态学适用于形状分析但运算速度慢,聚类分析灵活但依赖于初始设置。最后,讨论了深度学习在图像分割领域的优势和局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像是人们认知世界的主要来源。在日常生活中,针对一幅图像,因为工作研究的需要,人们可能是只对其中的一部分感兴趣,这就需要进行相关处理,使得目标图像被凸显出来,与背景不相干的部分产生较大距离,用到的技术既是图像分割技术。

所谓的图像分割,就是将图像里面相异的部分之间进行区分。同时,相互之间不能存在交集。而且,每一个区域都需要满足特定区域的一致性

简言之:

  1. 就是将一幅图像分割为不同区域,在某一个区域,在一定准则情况下,认为是相同性质;
  2. 若是不同区域,则具有明显的特征差别,只有这样才可以将图像划分为很多个有意义的区域。

其实质上,是一个按照像素属性(灰度,纹理,颜色)等聚类的过程。

                                                 图 :图像分割在图像工程中的位置

图像分割的目的:不但要把一张图像分解成为具有特色的部分,并且要提取需要分割的目标对象区域,也就是要全部提取那些人们需要的目标区域。

这些

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱多多先森

你的鼓励,是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值