IDEA Windows下Spark连接Hive

IDEA Windows下Spark连接Hive

一、本地Windows环境配置

本地构建HADOOP客户端

  • 将大数据平台的HAODOP环境打包拿到本地环境来:
#压缩整个HADOOP的目录之后解压至windows目录下
tar -zcvf hadoop.tar.gz hadoop260/ 

  • WindowsHADOOP运行环境文件下载

下载地址:https://github.com/cdarlint/winutils

下载对应版本的winutils至本地,之后将解压的全部文件替换至本地$HADOOP_HOME/bin目录下


将hadoop.dll 和 winutils.exe 拷贝至 C:\Windows\System32


  • 配置Windows环境变量

我的电脑–>属性–>高级系统设置–>环境变量

# 系统变量添加 HADOOP_HOME
    # 变量名:HADOOP_HOME
    # 变量值:D:\hadoop260
# 系统变量添加 HADOOP_USER_NAME
    # 变量名:HADOOP_USER_NAME
    # 变量值:root	#这里仅供参考也可以用大数据环境的其他用户,e.g. hdfs/hive;
# 系统变量 CLASS_PATH 添加
    # 变量值末尾添加:%HADOOP_HOME%\bin\winutils.exe;
# 系统变量 Path 添加	
	# 变量值添加:%HADOOP_HOME%\bin & %HADOOP_HOME%\lib

PS:以上全部完成后,重启主机


二、IDEA项目配置

1. POM配置

注意这里要和本地的 scala 版本一致,这里统一是 2.12

<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-core_2.12</artifactId>
    <version>2.4.5</version>
</dependency>

<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_2.12</artifactId>
    <version>2.4.5</version>
</dependency>

<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-hive -->
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-hive_2.12</artifactId>
    <version>2.4.5</version>
</dependency>

<!-- https://mvnrepository.com/artifact/org.apache.hive/hive-exec -->
<dependency>
    <groupId>org.apache.hive</groupId>
    <artifactId>hive-exec</artifactId>
    <version>1.1.0</version>
</dependency>

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>5.1.38</version>
</dependency>

2. 资源文件配置

resource目录下添加 HADOOP及hive的配置文件

$HADOOP_HOME/etc/hadop目录下的:

  • hdfs-site.xml
  • yarn-site.xml
  • core-site.xml

$HIVE_HOME/conf目录下的:

  • hive-site.xml

另外贴下log4j.properties的配置,有需要的可以配置下:

## 控制台输出配置
log4j.appender.Console=org.apache.log4j.ConsoleAppender
log4j.appender.Console.layout=org.apache.log4j.PatternLayout
log4j.appender.Console.layout.ConversionPattern=%d [%t] %-5p [%c] - %m%n

# 文件输出配置
log4j.appender.A = org.apache.log4j.DailyRollingFileAppender
log4j.appender.A.File = D:/log.txt #指定日志输出路径
log4j.appender.A.Append = true
log4j.appender.A.Threshold = DEBUG
log4j.appender.A.layout = org.apache.log4j.PatternLayout #使用自定义日志格式化器
log4j.appender.A.layout.ConversionPattern = %-d{yyyy-MM-dd HH:mm:ss}  [ %t:%r ] - [ %p ]  %m%n #指定日志的输出格式
log4j.appender.A.encoding=UTF-8 #指定日志的文件编码

# 指定日志的输出级别与输出端
log4j.rootLogger=WARN,Console

3. 测试验证

  • 新建一个object
object App {
  def main(args: Array[String]): Unit = {
    //创建SparkConf
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("")
 	//创建SparkSession
    val spark = SparkSession.builder()
      .config(sparkConf)
      .config("HADOOP_USER_NAME","root")
      .enableHiveSupport()
      .getOrCreate()
    //测试连接hive
    spark.sql("show databases").show()
  }
}

在这里插入图片描述


PS:如果有写错或者写的不好的地方,欢迎各位大佬在评论区留下宝贵的意见或者建议,敬上!如果这篇博客对您有帮助,希望您可以顺手帮我点个赞!不胜感谢!


原创作者:wsjslient

作者主页:https://blog.csdn.net/wsjslient


### 回答1: 在Windows下使用IntelliJ IDEA连接SparkHive,需要进行以下步骤: 1. 安装Java和Spark:首先需要安装Java和Spark,并设置环境变量。 2. 下载Hive JDBC驱动:从Apache Hive官网下载Hive JDBC驱动,并将其添加到Spark的classpath中。 3. 创建SparkSession:在Java代码中创建SparkSession对象,并设置连接Hive的参数,如下所示: ``` SparkSession spark = SparkSession.builder() .appName("SparkHiveExample") .config("spark.sql.warehouse.dir", "/user/hive/warehouse") .config("hive.metastore.uris", "thrift://localhost:9083") .enableHiveSupport() .getOrCreate(); ``` 其中,`spark.sql.warehouse.dir`指定Hive的数据仓库目录,`hive.metastore.uris`指定Hive的元数据存储地址。 4. 执行Hive查询:使用SparkSession对象执行Hive查询,如下所示: ``` Dataset<Row> result = spark.sql("SELECT * FROM mytable"); result.show(); ``` 其中,`mytable`是Hive中的表名。 通过以上步骤,就可以在Windows下使用IntelliJ IDEA连接SparkHive了。 ### 回答2: 在Windows操作系统下,使用IntelliJ IDEA连接Apache Spark到Apache Hive需要以下步骤: 1. 安装Spark<br> 首先需要安装Apache Spark,并将路径添加到系统环境变量中。建议使用最新版本的Spark,因为这些版本支持最新版本的Hive。 2. 安装Hadoop<br> 要访问Hive,需要安装Hadoop并将路径添加到系统环境变量中。Spark使用Hadoop API访问HDFS,并通过Hive Metastore来访问Hive表。 3. 添加Spark样例库<br> 在IntelliJ IDEA中打开菜单“文件/设置”,然后在左侧窗格中选择“Libraries”。点击“+”图标,选择“Java”,然后选择Spark样例库的路径,然后点击“OK”。 4. 连接Hive<br> 创建一个Scala或Java项目。然后在IDEA中打开窗口“View”菜单下的“Tool Windows”,然后单击“Database”。 在“Database”窗口中,单击“+”图标,然后选择“Data Source” -> “Hive”。输入Hive Metastore的URL、用户名和密码,然后单击“Test Connection”以测试连接是否正常。 5. 创建连接<br> 在“Database”窗口中,单击“+”图标,然后选择“Data Source” -> “Spark SQL”。输入Spark Master的URL,单击“Test Connection”以测试连接是否正常。 6. 创建Spark应用<br> 创建一个新的Scala或Java类,并添加以下依赖项: ``` "org.apache.spark" %% "spark-core" % "2.4.7" "org.apache.spark" %% "spark-sql" % "2.4.7" % "provided" ``` 编写Spark应用程序来连接Hive表,例如: ```scala val spark = SparkSession.builder() .appName("Hive Spark Connection") .config("hive.metastore.uris", "thrift://localhost:9083") .enableHiveSupport() .getOrCreate() val df = spark.sql("select * from testdb.testtable") df.show() ``` 7. 运行应用程序<br> 如果应用程序没有运行,可以单击“Run”按钮,或使用命令行运行程序: ```bash spark-submit --class com.example.MyApp --master local[*] myapp.jar ``` 这就是使用IntelliJ IDEASpark连接Hive的基本步骤。通过这种方法可以方便地使用SparkHive进行大数据处理。 ### 回答3: 在Windows下使用IDEA连接SparkHive,需要准备以下环境: 1.安装Java JDK和Hadoop 首先需要安装Java JDK和Hadoop。建议使用Java 8版本,同时要确保Hadoop已经正确安装。在Windows下安装Hadoop,可以参考官方文档或者其他教程。 2.安装SparkHive组件 接下来需要安装SparkHive组件。可以直接在官方网站上下载安装包进行安装,或者使用Maven进行自动化管理。 3.配置IDEA开发环境 在IDEA中,需要添加SparkHive相关依赖的jar包。可以在POM文件中添加依赖,也可以手动添加Jar包。 同时,还需要配置SparkHive的配置参数,主要包括以下内容: (1)Spark的Master和AppName (2)Hive Thrift Server的地址和端口 (3)Hive的JDBC驱动程序 (4)Hive的用户名和密码 (5)Hive的默认数据库名称 上述配置可以在IDEA的“Run Configuration”中进行设置。 4.编写代码连接SparkHiveIDEA中,可以使用Scala或Java编写代码连接SparkHive。示例代码如下: ```scala import org.apache.spark.sql.SparkSession val spark = SparkSession.builder.appName("connectHive").master("local").getOrCreate() val df = spark.read.format("jdbc").option("url", "jdbc:hive2://hive-server:10000/default").option("driver", "org.apache.hive.jdbc.HiveDriver").option("user", "hive").option("password", "hive").option("dbtable", "mytable").load() df.show() ``` 在这个示例代码中,首先创建了一个Spark Session,并指定Master和AppName。然后使用Spark SQL的API连接Hive,通过HiveServer2访问Hive中的“mytable”表,最后展示查询结果。 总之,在Windows下使用IDEA连接SparkHive,需要安装Java JDK、Hadoop、SparkHive组件,配置IDEA开发环境,然后使用Scala或Java编写连接代码。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值