【人工智能】Foundational Models(基础模型/基座大模型,即大模型),是一类具有大量参数(通常在十亿以上),能在极为广泛的数据上进行训练,并适用于多种任务和应用的预训练深度学习模型。

一、基础模型(大模型)的诞生

2021年,斯坦福大学的研究员团队发表了一篇论文,提出了Foundational Models(基础模型,即大模型)的概念。简单来说,它是一类具有大量参数(通常在十亿以上),能在极为广泛的数据上进行训练,并适用于多种任务和应用的预训练深度学习模型。

大模型通过广泛数据集的训练后,可以适用于多种多样的需求

二、基础模型(大模型)的特点

基础模型(大模型)主要有以下四个特点:

  1. 规模和参数量大(Large)
    模型是通过机器学习技术训练出来的一个系统,根据输入生成合理输出。模型中包含了大量的参数(通常是数十亿到上百亿个参数),这些参数就像大脑中的纽带,帮助模型理解和生成语言。大模型通过其庞大的规模(拥有从数亿到数千亿级别的参数数量)来捕获复杂的数据模式,使得它们能够理解和生成极其丰富的信息。

  2. 适应性和灵活性强
    大语言模型拥有深层的神经网络结构,这使它能够理解和生成复杂的语言模式。模型具有很强的适应性和灵活性,能够通过微调(fine-tune)或少样本学习高效地迁移到各种下游任务,有很强的跨域能力。

  3. 广泛数据集的预训练/大量数据训练
    大语言模型在

### 视觉大模型综述文章的最新研究 视觉大模型的研究近年来取得了显著进展,涵盖了多个方面的问题挑战。例如,评估基准测试的困难、对现实世界理解的差距、对上下文理解的局限性、偏差、易受对抗性攻击以及可解释性问题均被广泛讨论[^1]。此外,最新的视觉语言模型(VLMs)通过结合预训练的视觉语言模型,实现了跨模态的有效桥接[^2]。 在综述性文章方面,可以参考以下几类资源: 1. **GitHub 综合列表** 一个全面的基础模型列表可以在 GitHub 仓库中找到,该仓库整理了计算机视觉领域的基础模型及其应用。具体链接为:https://github.com/awaisrauf/Awesome-CV-Foundational-Models[^1]。此资源不仅包括模型本身,还涵盖了许多相关的论文工具。 2. **CogVLM 模型架构** CogVLM 是一种先进的视觉语言模型,它通过在每个 Transformer 层中插入视觉专家模块,实现了视觉语言特征的双重交互与融合[^3]。这种设计使得模型能够更有效地处理多模态任务。 3. **学术期刊会议论文** 最新的综述性文章通常发表在顶级学术期刊会议上,如 CVPR、ICCV、ECCV NeurIPS。这些会议的文章通常会总结当前的技术状态,提出未来的研究方向。例如,CVPR 2023 ICCV 2023 的论文集可能包含关于视觉大模型的最新综述。 4. **在线预印本平台** 平台如 arXiv 提供了大量的预印本文章,其中许多是对视觉大模型的深入分析。可以通过搜索关键词“Vision Foundation Models Review”或类似术语来查找最新的综述文章。 以下是实现视觉大模型的一个简单代码示例,展示如何加载预训练模型进行推理: ```python from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer import torch from PIL import Image # 加载预训练模型 model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") # 图像预处理 image = Image.open("example_image.jpg") pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values # 模型推理 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) pixel_values = pixel_values.to(device) generated_ids = model.generate(pixel_values, max_length=16) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_text) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

本本本添哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值