一、基础模型(大模型)的诞生
2021年,斯坦福大学的研究员团队发表了一篇论文,提出了Foundational Models(基础模型,即大模型)的概念。简单来说,它是一类具有大量参数(通常在十亿以上),能在极为广泛的数据上进行训练,并适用于多种任务和应用的预训练深度学习模型。
二、基础模型(大模型)的特点
基础模型(大模型)主要有以下四个特点:
-
规模和参数量大(Large):
模型是通过机器学习技术训练出来的一个系统,根据输入生成合理输出。模型中包含了大量的参数(通常是数十亿到上百亿个参数),这些参数就像大脑中的纽带,帮助模型理解和生成语言。大模型通过其庞大的规模(拥有从数亿到数千亿级别的参数数量)来捕获复杂的数据模式,使得它们能够理解和生成极其丰富的信息。 -
适应性和灵活性强:
大语言模型拥有深层的神经网络结构,这使它能够理解和生成复杂的语言模式。模型具有很强的适应性和灵活性,能够通过微调(fine-tune)或少样本学习高效地迁移到各种下游任务,有很强的跨域能力。 -
广泛数据集的预训练/大量数据训练:
大语言模型在