解决使用torch.cuda.empty_cache()仍然GPU显存无法释放的问题

在开发的过程中,程序已经关闭,但是GPU显存无法释放,在使用pytorch写程序的时候, 有时候会在控制台终止掉正在运行的程序,但是有时候程序已经结束了,nvidia-smi也看到没有程序了,但是GPU的内存并没有释放,这是怎么回事呢?

使用pytorch设置多线程(threads)进行数据读取(DataLoader),其实是假的多线程,他是开了N个子进程(PID都连着)进行模拟多线程工作,所以程序跑完或者中途kill掉主进程的话,子进程的GPU显存并不会被释放,需要手动一个一个kill才行。

解决办法:

1、查看现象

nvidia-smi

2、查看进程

sudo fuser -v /dev/nvidia*

3、取出PID

sudo fuser -v /dev/nvidia*| sudo awk -F " " '{print $0}' >/tmp/pid.file

4、强制杀掉进程

while read pid ; do sudo kill -9 $pid; done </tmp/pid.file
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UASM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值