为什么负梯度方向是函数下降最快的方向

本文通过一阶泰勒展开解释了为什么负梯度方向是目标函数下降最快的方向。在起始点进行展开,当变量变化足够小时,函数值的减少量由负梯度与变量变化的内积决定,当两者同向时,内积最大,函数值下降最多。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 为什么负梯度方向是函数下降最快的方向

f(x)f (\mathbf {x})f(x)target functionx0\mathbf{x}_0x0start point
x0\mathbf {x}_0x0 处做写出一阶泰勒展式:
f(x)=f(x0)+∇f(x0)⋅(x−x0)+O(∥x−x0∥2) f (\mathbf {x})=f (\mathbf {x}_0)+\nabla f (\mathbf {x}_0) \cdot (\mathbf {x}-\mathbf {x}_0)+O (\lVert \mathbf {x}-\mathbf {x}_0 \rVert^2) f(x)=f(x0)+f(x0)(xx0)+O(xx02)
∥x−x0∥2\lVert \mathbf {x}-\mathbf {x}_0 \rVert^2xx02 足够小时,有
f(x0)−f(x)=−∇f(x0)⋅(x−x0) f (\mathbf {x}_0)-f (\mathbf {x})=-\nabla f (\mathbf {x}_0) \cdot (\mathbf {x}-\mathbf {x}_0) f(x0)f(x)=f(x0)(xx0)
等式右边是 −∇f(x0)-\nabla f (\mathbf {x}_0)f(x0)(x−x0)(\mathbf {x}-\mathbf {x}_0)(xx0) 的内积,我们知道当这两个向量同向时,内积最大,此时函数值下降的最多,于是可以得出结论:负梯度方向是函数下降最快的方向。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值