Flink 是一个分布式数据处理框架,Kafka 是一个高性能的消息队列,HBase 是一个分布式高可用的 NoSQL 数据库。Flink 可以很好地集成 Kafka 和 HBase,实现从 Kafka 同步数据到 HBase。
下面是一个简单的示例代码,演示如何使用 Flink 将 Kafka 中的数据同步到 HBase 中:
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.flink.streaming.connectors.kafka.KafkaSink;
import org.apache.flink.streaming.connectors.kafka.KafkaTopicPartition;
import org.apache.flink.streaming.connectors.kafka.internals.KeyedSerializationSchemaWrapper;
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema;
import org.apache.flink.types.Row;
import java.util.Properties;
public class KafkaToHBase {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// Kafka 配置
Properties kafkaProps = new Properties();
kafkaProps.setProperty("bootstrap.servers", "localhost:9092");
kafkaProps.setProperty("group.id", "test");
// 创建 Kafka 数据源
FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("input", new SimpleStringSchema(), kafkaProps);
DataStream<String> kafkaDataStream = env.addSource(kafkaConsumer);
// 将 Kafka 中的数据转换为 HBase 行
DataStream<Row> hbaseDataStream = kafkaDataStream.map(new MapFunction<String, Row>() {
@Override
public Row map(String value) throws Exception {
// 将 value 转换为 HBase 行
Row row = new Row(3);
row.setField(0, "rowkey");
row.setField(1, "cf");
row.setField(2, "value");
return row;
}
});
// HBase 配置
Properties hbaseProps = new Properties();
hbaseProps.setProperty("hbase.zookeeper.quorum", "localhost:2181");
hbaseProps.setProperty("zookeeper.znode.parent", "/hbase-unsecure");
// 创建 HBase Sink
HBaseSink hbaseSink = new HBaseSink(hbaseProps, "tableName");
// 将 HBase 行写入 HBase
hbaseDataStream.addSink(hbaseSink);
env.execute("KafkaToHBase");
}
}
// HBase Sink
class HBaseSink extends RichSinkFunction<Row> {
private transient Connection connection;
private transient Table table;
private final Properties props;
private final String tableName;
public HBaseSink(Properties props, String tableName) {
this.props = props;
this.tableName = tableName;
}
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
Configuration config = HBaseConfiguration.create();
config.set("hbase.zookeeper.quorum", props.getProperty("hbase.zookeeper.quorum"));
config.set("zookeeper.znode.parent", props.getProperty("zookeeper.znode.parent"));
connection = ConnectionFactory.createConnection(config);
table = connection.getTable(TableName.valueOf(tableName));
}
@Override
public void close() throws Exception {
super.close();
if (table != null) {
table.close();
}
if (connection != null) {
connection.close();
}
}
@Override
public void invoke(Row row, Context context) throws Exception {
Put put = new Put(Bytes.toBytes(row.getField(0).toString()));
put.addColumn(Bytes.toBytes(row.getField(1).toString()), Bytes.toBytes(row.getField(2).toString()), Bytes.toBytes(row.getField(3).toString()));
table.put(put);
}
}
在上面的代码中,我们首先创建一个 Kafka 数据源,从 Kafka 中读取数据。然后,我们将 Kafka 中的数据转换为 HBase 行,并使用 HBaseSink 将 HBase 行写入 HBase 中。
需要注意的是,在 HBaseSink 中,我们使用 HBase 的 Java API 将 HBase 行写入 HBase 中。如果需要更高的性能,可以考虑使用 HBase 的 Bulk Load API。
这里的示例代码仅供参考,实际应用中需要根据具体场景进行修改和优化。