为什么你的RAG效果总差强人意?
文档切片不科学导致信息丢失?向量模型选型不当影响召回精度?大模型调参混乱难以稳定输出?
本文基于百家企业落地验证,系统性拆解RAG五大核心阶段(文档准备→解析切片→向量存储→检索召回→生成优化),直击开发瓶颈,提供可复用的框架级解决方案!
📌 你将获得
✅ 从Token切片到语义切片的文档解析最佳实践
✅ Embedding选型与向量数据库的性能-成本平衡策略
✅ 检索前问题改写&标签增强、检索后Rerank的双重精度提升方案
✅ 大模型Prompt工程与参数调优的工业级适配技巧
适合人群:
🔹 企业技术负责人:构建高可用RAG架构,降低试错成本
🔹 开发者:快速定位问题环节,掌握全链路调优方法论
🔹 技术团队:复制标准化开发范式,加速项目交付
前面已经对RAG的基础原理做了介绍,不清楚的可以先看RAG的基础原理-CSDN博客
这里我们还是先回顾 RAG 的工作流程
RAG(Retrieval Augmented Generation,检索增强生成)是一种结合了信息检索和生成式模型的技术,能够在生成答案时利用外部知识库中的相关信息。它的工作流程可以分为几个关键步骤:解析与切片、向量存储、检索召回、生成答案等。
基于上面的工作流程,我们将从 RAG 中的每一个环节入手,尝试优化 RAG 的效果。
1 文档准备阶段
首先,你需要确保文档包含员工需要的全部信息,提前做好准备:
-
包含相关知识:你需要验证文档中是否包含了用户可能提出的问题。 例如,公司新增了一个"数据分析部",但知识库中没有相关文档,导致无法回答"数据分析部的职责是什么?"的问题。解决方案是补充该部门的职责文档。
-
表达要直接和清晰:你需要改进文档的表达方式,确保信息能被快速检索和准确理解,从而更好匹配用户的提问需求,避免隐藏关键信息。 例如,员工提问"张伟的工作职责是什么?“,但文档中只提到"张伟负责IT支持”,没有明确职责描述。可以在文档中补充更详细的职责描述。
这两项准备工作是保证 RAG 应用优化效果的前提,如果你已经做好准备,就可以开始深入了解和优化 RAG 应用的各个环节了。
2 文档解析与切片阶段
首先,RAG 应用会解析你的文档内容,然后对文档内容进行切片。
大模型在回答问题时拿到的文档切片如果缺少关键信息,会回答不准确;如果拿到的文档切片非关联信息过多(噪声),也会影响回答质量。即过少或过多的信息,都会影响模型的回答效果。
因此,在对文档进行解析与切片时,需要确保最终的切片信息完整,但不要包含太多干扰信息。
在这个阶段你可能会遇到以下问题:
类别 | 细分类型 | 改进策略 | 场景化示例 |
文档解析 | 文档类型不统一,部分格式的文档不支持解析 比如前面用到的 SimpleDirectoryLoader 并不支持 Keynote 格式的文件 | 开发对应格式的解析器,或转换文档格式 | 例如,某公司使用了大量的 Keynote 文件存储员工信息,但现有的解析器不支持 Keynote 格式。可以开发 Keynote 解析器或将文件转换为支持的格式(如 PDF)。 |
已支持解析的文档格式里,存在一些特殊内容 比如文档里嵌入了表格、图片、视频等 | 改进文档解析器 | 例如,某文档中包含了大量的表格和图片,现有解析器无法正确提取表格中的信息。可以改进解析器,使其能够处理表格和图片。 | |
... | ... | ... | |
文档切片 | 文档中有很多主题接近的内容 比如工作手册文档中,需求分析、开发、发布等每个阶段都有注意事项、操作指导 | 扩写文档标题及子标题 「注意事项」=>「需求分析>注意事项」 建立文档元数据(打标) | 例如,某文档中包含多个阶段的注意事项,用户提问“需求分析的注意事项是什么?”时,系统返回了所有阶段的注意事项。可以通过扩展标题和打标来区分不同阶段的内容。 |
文档切片长度过大,引入过多干扰项 | 减少切片长度,或结合具体业务开发为更合适的切片策略 | 例如,某文档的切片长度过大,包含了多个不相关的主题,导致检索时返回了无关信息。可以减少切片长度,确保每个切片只包含一个主题。 | |
文档切片长度过短,有效信息被截断 | 扩大切片长度,或结合具体业务开发为更合适的切片策略 | 例如,某文档中每个切片只有一句话,导致检索时无法获取完整的上下文信息。可以增加切片长度,确保每个切片包含完整的上下文。 | |
... | ... |