对其他动态规划问题感兴趣的,也可以查看
一开始在接触动态规划的时候,可能会云里雾里,似乎能理解思路,但是又无法准确地表述或者把代码写出来。本篇将一步一步通过作图的方式帮助初次接触动态规划的同学来理解问题。这一篇将以经典的 01背包 问题为例子来讲解,最后通过纯 JavaScript 来实现,在 Sublime 上运行演示。当然如果不会 JavaScript 也一点关系都没有,因为最重要的是理解整个推导过程。在语言实现的时候,也没有涉及什么语言特性,基本上懂个C语言就能看懂了。
问题
给定一个固定大小的背包,背包的容量为 capacity,有一组物品,存在对应的价值和重量,要求找出一个最佳的解决方案,使得装入背包的物品总重量不超过背包容量 capacity,而且总价值最大。本题中给出了3个物品,其价值和重量分别是 (3,2),(4,3),(5,4)。括号左边为价值,右边为重量,背包容量 capacity 为5。那么求出其搭配组合,使得背包内总价最大,且最大价值为多少?
分析
在开始计算之前,需要先对动态规划中的01背包问题有基本的理解:
物品无法拆成分数形式,如果能拆分,那就属于贪婪算法问题,在后面的文章我们也会介绍贪婪算法。
不一定恰好装满背包。
装满时总价值不一定最大。
每样物品各一件
常规情况下,在表格中,价格和重量一般都是从上到下递增的。我们填表分析的时候,其实是事先默认了这种递增的关系。
清楚了上面的原则之后,就可以开始进行分析了。
当一个新物品出现的时候,需要去决策如果选择了它,是否会让总价值最大化。我们根据问题,建立如下表格用于分析:

我们对这个表格做一下说明,左上角 val 和 w 分别是物品的价值和重量。即上面所描述的3个物品的价值与重量对应关系。
从第三列到最后一列,使用了变量 j,它表示背包总容量,最大值为5,也就是前面问题所