
论文研读
念殊15
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Relation-Shape Convolutional Neural Network for Point Cloud Analysis 论文解读
Abstract 1.点云不规则点所表示的形状是很难分析的,本文将规则的卷积操作应用了不规则的点云分析上,称为Relation-Shape Convolutional Neural Network,主要是为了学习点和点之间的几何拓扑限制。 ps:拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。 2.局部点集的权重必须从预定义的几何先验中学习高级的关系表达式,这样可以获得含有明显空间布局的局部点的表示 3.除了RS-CNN基本模块原创 2020-10-14 13:56:33 · 677 阅读 · 3 评论 -
Cascaded Refinement Network for Point Cloud Completion 论文阅读
标题翻译:用于点云补全的级联优化网络 1.Abstract 点云是稀疏且不完整的,已经存在的方法很难生成物体的细节、学习到复杂的点分布。 因此我们提出一种级联优化网络,使用一种从粗糙到细节的策略,来合成点云的细节信息。 考虑到局部输入的局部细节以及全局形状信息,我们保留不完整点集中的现有细节,并以较高的准确率生成具有的缺失部分。 我们还设计了一个patch-based discriminator,...原创 2020-05-06 18:50:25 · 2093 阅读 · 0 评论 -
PU-GAN a Point Cloud Upsampling Adversarial Network
这篇是ICCV2019的一篇上采样论文。 Ps:学习论文时,我只备注重要的知识点。 一、Abstract 1、概括 存在问题 点云是稀疏、有噪音(outlier points)、不均匀的 作者目的 学习已有点的特征, 从而增加点, 并且使点的分布要均匀 采取方法 generative adversarial network (GAN)、Patch-based Upsamplin...原创 2020-04-19 15:25:17 · 1596 阅读 · 0 评论