Kmeans 优化

通过学习 李航 博士 的统计学习方法,知道了kd树 用于优化Kmeans算法,

不经意间,看到了还有一种优化算法,叫 Ball tree,先将这两种算法的比较列举如下:

 

Kd树: 依次对K维坐标轴,以中值切分构造的树,每一个节点都是一个超矩形,在维数小于20时,效率最高。 

Balltree: 为了克服kd树高维失效而发明的,其构造过程是以质心C和半径R分割样本空间,每一个节点都是一个超球体

知乎: https://zhuanlan.zhihu.com/albertwang

微信公众号:AI-Research-Studio

https://i-blog.csdnimg.cn/blog_migrate/5509f60f875d387159a310532cc257dd.png ​​

下面是赞赏码

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值