The single-site impurity model is a simplified version of the lattice model, which is used in the Dynamical Mean Field Theory (DMFT) to study strongly correlated systems. It consists of a single impurity site coupled to a non-interacting bath, and is described by the following Hamiltonian:
where ${\hat d}^{\dagger}{\sigma}$ and ${\hat d}{\sigma}$ are the creation and annihilation operators for the impurity site, ${\hat c}^{\dagger}{k\sigma}$ and ${\hat c}{k\sigma}$ are the creation and annihilation operators for the bath states, and $\epsilon_{d}$ and $\epsilon_{k}$ are the energies of the impurity and bath states, respectively. $U$ is the strength of the on-site Coulomb interaction, and $V_{k}$ is the coupling between the impurity site and the bath states.
To solve the impurity model using exact diagonalization, we first need to construct the Hamiltonian matrix in the basis of the Fock states, which are the states with a well-defined number of electrons in the impurity site. The size of the matrix depends on the number of bath states included in the calculation and the number of electrons in the impurity site. For example, if we consider a half-filled impurity site and include four bath states, the size of the Hamiltonian matrix is 16x16.
Once the Hamiltonian matrix is constructed, we can diagonalize it using standard techniques, such as the Lanczos algorithm or the full diagonalization method. The eigenvectors and eigenvalues of the Hamiltonian matrix represent the eigenstates and energies of the system, respectively. The lowest eigenvalue corresponds to the ground state energy of the system, and the corresponding eigenvector gives the wavefunction of the ground state.
To calculate the physical observables, such as the density of states or the spectral function, we need to evaluate the relevant matrix elements of the operators in the eigenstates of the Hamiltonian. This can be done using the eigenvectors obtained from the diagonalization of the Hamiltonian matrix.
Exact diagonalization is a powerful and versatile method to study the properties of strongly correlated systems, but it is limited by the size of the system that can be treated, due to the exponential growth of the Hilbert space with the number of particles. For large systems, other numerical techniques, such as the density matrix renormalization group (DMRG) or the quantum Monte Carlo (QMC) method, may be more efficient.
To construct the Hamiltonian matrix in the basis of the Fock states, we first need to define a set of basis states that span the Hilbert space of the impurity model. The basis states are constructed by specifying the occupation of the impurity site and the bath states. For example, if we consider a half-filled impurity site and include four bath states, the basis states are given by:
where $|0\rangle_{d}$ and $|1\rangle_{d\sigma}$ are the vacuum and single-occupation states of the impurity site, respectively, and $|0\rangle_{k_{i}}$ and $|1\rangle_{k_{i}}$ are the vacuum and single-occupation states of the $i$th bath site, respectively.
The Hamiltonian matrix is then constructed by evaluating the matrix elements of the Hamiltonian operator $\hat{H}$ in the basis of the Fock states. The matrix elements are given by:
where each matrix element is a product of the matrix element of the impurity Hamiltonian operator $\hat{H}{d}$ and the matrix element of the bath Hamiltonian operator $\hat{H}{bath}$:
To calculate the matrix elements, we need to evaluate the matrix elements of the impurity Hamiltonian operator $\hat{H}{d}$ and the bath Hamiltonian operator $\hat{H}{bath}$ in the basis of the impurity states and the bath states, respectively.
Once the Hamiltonian matrix is constructed, we can diagonalize it to obtain the energy eigenvalues and eigenvectors of the impurity model. The eigenvectors give us the coefficients