分块矩阵求行列式

分块矩阵求行列式

注意,第二个公式有误, 

将矩阵写为

P = [A,B;B,A],那么det(P)=det(A)det(A-BA^-1B)=def(A-BA^-1B)

 

a=[1;-1]

A*a=b1

B*a=b2

a=0或a=1均可构造无穷多解

def(A)*det(D-CA^-1*B)

=-a^2*(D+C*A*B)

def(A)*det(D-CA^-1*B)

在C语言中计算对称矩阵行列式,可以使用高斯消元或者利用矩阵的特性来简化计算。对称矩阵意味着它的主对角线元素相等,其他元素关于主对角线是对称的。例如,一个3x3的对称矩阵会看起来像这样: ``` | a b c | | b a d | | c d a | ``` 其中a = d且b = c。 对于这类矩阵,有快速的算法可以利用这种特殊结构来计算行列式。你可以选择以下几种方法之一: 1. **LU分解**:首先将对称矩阵转换成上三角形式(U),然后通过乘积 `det(A) = det(U) * det(L)` 计算行列式,其中L是下三角矩阵,因为对称矩阵的L和U是对称的,这一步可以用递归公式完成。 2. **特征值方法**:由于对称矩阵的实数特征值是唯一确定的,可以先找到特征值,然后行列式就是特征值之积。计算特征值通常涉及解特征多项式,但这需要额外的库支持,比如数值计算库。 3. **行主序展开**:可以选择行主序(即按行交替展开法则),对称矩阵在这种情况下展开后的系数是相同的,这能简化计算过程。 ```c // 示例代码片段(非完整版) #include <stdio.h> double determinant(int n, double matrix[n][n]) { if (n == 2) { return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]; } else { int i; double sub_determinant = 0.0; for (i = 0; i < n; i++) { // 按行交替展开 sub_determinant += matrix[0][i] * determinant(n - 1, &matrix[1][i]); } return sub_determinant; } } int main() { double symmetric_matrix[3][3] = { {1, 2, 2}, {2, 1, 2}, {2, 2, 1} }; printf("The determinant is: %.2f\n", determinant(3, symmetric_matrix)); return 0; } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值