写在前面的话
如果我一直不开始学,我一定会成为问题。与现在看博客的同学共勉。
本节目标
课程一开始的目标是学习4小时,预测分数值。然后发展到,学习4小时,预测通过考试的概率。现在发展到,如果我们的数据具有多个特征维度,预测是否会得糖尿病或者有多大概率会得糖尿病。
上两图中,图1的行表示样本、记录;图2的列表示特征、字段。我们通过一个人的8个特征来推测这个人是否会得糖尿病,用Y表示。
本节实现过程
多维的特征输入应该怎么办呢?我们就需要把每一个特征x乘以相应的权重。注意:每个样本x乘的权重是不一样的。 在进行逻辑回归时,把每一个维度的x乘相应的权值的和加上一个偏置量,送入sigema函数进行二分类,就像上图一样。
本节课(多维特征)和上节课(单维特征)的最主要区别是下图的红色字体
我们在本节课构建了3层非线性网络,8维->6维->4维->1维。
代码实现
过程:
1.准备数据集
2.定义网络模型
3.构建损失函数和优化器
4.循环训练
5.绘图,评价指标:损失函数、精确度分析
# 这里是多维数据输入,激活函数是sigmoid函数
import matplotlib.pyplot as plt
import numpy as np
import torch
# 准备数据集
xy = np.loadtxt('diabetes.csv.gz',delimiter=',',dtype=np.float32)
x_data = torch.from_numpy(xy[:,:-1]) # 表示最后一列不要
y_data = torch.from_numpy(xy[:,[-1]]) # [-1]的[]表示抽取出来的是一个矩阵,不是向量。此时抽取最后一列
print(x_data.size())
print(y_data.size())
# 定义模型
class Model(torch.nn.Module):
def __init__(self):
super(Model,self).__init__()
self.linear1 = torch.nn.Linear(8,6) # 8D -> 6D -> 4D ->1D
self.linear2 = torch.nn.Linear(6,4)
self.linear3 = torch.nn.Linear(4,1)
self.sigmoid = torch.nn.Sigmoid() # 此时是1/(1+e^(-z))作用。将其看作是网络的一层,而不是简单的函数使用
def forward(self,x):
x = self.sigmoid(self.linear1(x)) # 此时x不断更新
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x)) # y hat
return x
model = Model()
# 构建损失和优化器
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(),lr=0.1)
epoch_list = []
loss_list = []
# 训练循环
for epoch in range(1000):
# Forward 前馈
y_pred = model(x_data)
loss = criterion(y_pred,y_data)
print(epoch,loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())
# Backward 反馈
optimizer.zero_grad()
loss.backward()
# Update 更新
optimizer.step()
plt.plot(epoch_list,loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()
下方是relu和sigmoid激活函数一起实现,收敛更快。
# 这里是多维数据输入,激活函数是RELU和sigmoid函数
import numpy as np
import torch
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文
### 新建空列表存储绘图所用的数据
epoch_list = []
loss_list = []
acc_list = []
# 准备数据集
xy = np.loadtxt('diabetes.csv.gz',delimiter=',',dtype=np.float32)
x_data = torch.from_numpy(xy[:,:-1]) # 表示最后一列不要
print(x_data.size())
y_data = torch.from_numpy(xy[:,[-1]]) # [-1]的[]表示抽取出来的是一个矩阵,不是向量。此时抽取最后一列
print(y_data.size())
# 定义模型
class Model(torch.nn.Module):
def __init__(self):
super(Model,self).__init__()
self.linear1 = torch.nn.Linear(8,6) # 8D -> 6D -> 4D ->1D
self.linear2 = torch.nn.Linear(6,4)
self.linear3 = torch.nn.Linear(4,1)
self.sigmoid = torch.nn.Sigmoid() # 此时sigmoid函数是1/(1+e^(-z))作用
self.activate = torch.nn.ReLU()
def forward(self,x):
x = self.activate(self.linear1(x)) # 此时x不断更新
x = self.activate(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
# 构建损失和优化器
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(),lr=0.1)
# 训练循环
for epoch in range(1000):
# Forward 前馈
y_pred = model(x_data)
loss = criterion(y_pred,y_data)
print(epoch,loss.item())
# Backward 反馈
optimizer.zero_grad()
loss.backward()
# Update 更新
optimizer.step()
epoch_list.append(epoch)
loss_list.append(loss.item())
y_pred_label = torch.where(y_pred >= 0.5,torch.tensor([1.0]),torch.tensor([0.0]))
accuracy = torch.eq(y_pred_label,y_data).sum().item() / y_data.size(0)
acc_list.append(accuracy)
print('loss=',loss.item(),'acc=',accuracy)
plt.plot(epoch_list, loss_list)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()
# plt.plot(epoch_list,acc_list)
# plt.xlabel('epoch')
# plt.ylabel('accuracy')
# plt.show()
补充知识
1.什么是激活函数?、激活函数的理解
2.y_pred_label = torch.where(y_pred >= 0.5,torch.tensor([1.0]),torch.tensor([0.0]))
accuracy = torch.eq(y_pred_label,y_data).sum().item() / y_data.size(0)解释一下这两行代码的意思
3.参考博客[1]、[2]、[3]