- 博客(151)
- 资源 (1)
- 收藏
- 关注
原创 dify火山插件安装及配置-多租户环境
火山插件安装失败或配置不显示的解决方案:1)在线安装失败时可本地安装插件文件;2)确保只运行一个插件守护进程副本,避免写冲突;3)多租户环境下需为每个租户单独安装插件并配置API密钥(可与admin相同);4)注意保存配置才能生效。关键点:单进程运行、多租户独立配置、本地安装备选方案。
2025-06-04 12:03:39
158
原创 刚需才是根本,AI 只是助力
但教育的本质绝不仅仅是知识的灌输,更重要的是师生之间的情感互动、思想碰撞以及价值观的引导。因为教育的对象是活生生的人,每个人都有其独特的情感、思维和成长轨迹,而 AI 只能基于预设的算法和数据进行机械的操作,无法真正触及人类心灵的深处,无法满足教育刚需中对于情感与人文关怀的需求。我们应当在拥抱 AI 技术带来的便利和机遇的同时,始终坚守刚需的本质,将 AI 有机地融入到满足刚需的过程中,以人为本,合理利用 AI,让科技真正服务于人类的幸福与发展,而不是被 AI 所左右,迷失在技术的光环之中。
2025-05-26 07:53:31
258
原创 dify创建银行客服系统例子
`account_query` | 查询账户基础信息 | card_number(完整卡号) | query_type(balance/明细) | `{"balance":"****.00","last_tran":"****-**-** ****:****"}` || `transfer_to_human` | 转接人工坐席 | queue_position(排队位次) | none | `{"wait_time":"预计等待**分钟","agent_id":"****"}` |
2025-05-23 15:07:47
687
原创 基于自然语言转SQL的BI准确率如何?
自然语言转SQL(NL2SQL)的商业智能(BI)工具目前准确率处于中等偏上水平,简单查询可达80%~95%,复杂查询约50%~80%。其技术原理包括基于规则和基于机器学习的方法,前者适用于结构化场景,后者可处理复杂查询但需大量标注数据。影响准确率的关键因素包括数据结构的复杂性、自然语言的歧义性、模型训练数据的质量以及交互设计。实际应用中,NL2SQL适用于非技术用户的快速查询、标准化报表和简单数据分析,但在处理复杂业务逻辑、数据安全和数据字典完整性方面存在局限性。
2025-05-20 15:02:15
708
原创 dify知识库支持图文回复实践
Dify知识库支持图文混排输出,以Word文档为例,实现步骤如下:首先,准备一个包含图文的Word文档,如“XXX用户使用手册.docx”,文档解析后会显示图片标记,如。其次,编写有效的提示词,建议使用支持视觉处理的大模型,以确保图文内容的准确解析和输出。最后,通过模型处理,实现图文并茂的回复效果,提升用户交互体验。
2025-05-16 17:40:22
633
1
原创 真正的 AI 价值,藏在对业务的深刻理解里
例如,对于一位经常购买电子产品且对产品参数高度关注的客户,当他在咨询一款新手机时,智能客服不仅能准确解答关于手机配置的问题,还能根据不同使用场景为他推荐最适合的配件,并提供相关的优惠信息。”、“如何进行退货换货?从这些实际案例中我们可以看到,只有当 AI 技术真正深入到业务的核心,深刻理解业务的需求、流程和痛点,并与业务深度融合时,才能发挥出其巨大的价值,为企业和社会创造实实在在的效益。更重要的是,通过对客户咨询数据的挖掘和分析,为电商平台的精准营销、产品优化等业务提供了有力支持,带来了销售额的持续增长。
2025-05-16 08:26:43
390
原创 AI 商业落地的艰难探索:从大模型到智能体的坎坷之路
例如在智能客服场景中,当用户提问时,RAG 架构可以先从企业的知识库中检索与问题相关的准确信息,再由大模型生成回答,从而减少幻觉现象的发生。这就像是一场赌局,AI 在商业落地的道路上不断地尝试各种方案,从大模型到 RAG、长文本,再到智能体,每一次的尝试都像是在赌一次新的机会,希望能够解决之前的问题,真正实现商业价值。在人工智能的发展历程中,大模型的出现无疑是一次重大的技术突破,其展现出了超乎想象的强大能力,从自然语言处理到图像识别,再到各种复杂任务的解决,似乎都能轻松应对。
2025-05-13 08:36:39
403
原创 豆包:国内 web 辅助开发的领头羊
它为开发者提供了全新的开发方式和思路,激发了开发者的创造力和创新精神,使开发者能够更加专注于核心业务逻辑和创新功能的实现,加速了 web 项目的交付和迭代,为互联网行业的快速发展注入了强大动力。在编写复杂函数时,它能及时提示可能的错误并给出修正建议,有效减少了因拼写错误或语法错误导致的代码崩溃,降低了开发过程中的出错率。在未来的 web 开发中,豆包将继续发挥其技术优势,不断探索和创新,为开发者带来更多更强大的功能和更优质的体验,引领国内 web 开发迈向更高的台阶,共同塑造 web 开发的美好未来。
2025-05-11 11:37:40
2389
原创 表关联映射工具
坐席业绩场景通常存在数据分散在不同的系统情况,字段可以关联的场景可以直接使用字段关联,字段无法关联的场景需要进行值关联,典型的情况:坐席ID不变,这个月张三在打电话,下个月张三离职了,是李四在打电话,但坐席ID没有变,人换了,这个时候就需要使用值关联来实现业绩的统计。下面是字段关联和值关联的实现的例子,提供了优化易操作的界面,在进行字段关联和值关联的同时还可以自动生成SQL,供统计查询使用。假设B是坐席辅助系统的表,A是从其它系统导出的数据表,通常以CSV格式存在,导入到坐席辅助系统后,表名为A。
2025-05-11 10:42:06
373
原创 坐席业绩数据分析
2、系统导航区域:放置上传csv文件的按钮,需要正确解析日期、坐席姓名、一级机构至五级机构的机构名称、各业绩的中位值,(数据格式:日期,坐席姓名,一级机构,二级机构,三级机构,四级机构,五级机构,业务等级,在线时长,外呼时长,接通时长,外呼次数,接通次数,有效通次,接通率,违规次数,推荐次数),时长的单位均为分钟。使用papaparse.js,chart.js,tailwindcss和font-awesome,生成一个可以交互的简洁且可以运行的HTML代码,不要输出无关内容。1、按坐席姓名输出业绩折线图。
2025-05-09 22:43:03
633
1
原创 Phi-4-reasoning技术报告
Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, Piero Kauffmann, Yash Lara, Caio César Teodoro Mendes, Arindam Mitra, Besmira Nushi, Dimitris
2025-05-06 19:12:48
897
1
原创 召回率和精准率-找书的例子
\text{召回率}=\frac{\text{找到的正确书的数量}}{\text{图书馆里所有正确的书的总数量}}][\text{精准率}=\frac{\text{找到的正确书的数量}}{\text{你找出来的书的总数量}}]• 精准率高:说明你找书的时候,大部分找到的书都是相关的,很少有无关的书混进来。这说明你找到了图书馆里所有相关书的一部分,但还有很多相关的书你没有找到。这说明你找书的时候,大部分书都是相关的,只有很少一部分是不相关的。• 召回率高:说明你找到了图书馆里大部分相关的书,没有漏掉很多。
2025-04-17 15:07:06
204
原创 AI平权加速两极分化的现象、成因与解决路径
最后,本文提出了推动技术普惠、加强教育与技能培训、优化资源分配、完善政策与伦理监管,以及加强国际合作等解决路径,以期为实现AI技术的公平与可持续发展提供参考。AI平权的加速虽然带来了技术红利,但也加剧了社会的两极分化。通过推动技术普惠、加强教育与技能培训、优化资源分配、完善政策与伦理监管,以及加强国际合作,可以有效缓解这一问题,确保技术红利惠及更多人,推动社会公平与可持续发展。尽管AI平权的初衷是促进公平,但现实中由于技术资源的集中化、算法偏见以及教育与技能的不平等,反而可能加剧社会的两极分化。
2025-04-16 08:54:01
488
原创 根据pdf文档生成问答并进行检索评估
1、将pdf放在opeai_blog_pdfs目录下,引用依赖。5、生成问题列表,这里需要注意chunk的大小及重合。目标是根据pdf文档生成问答,并进行检索评估。8、把所有问题存储在rows列表中。2、上传pdf文件,创建向量库。7、把所有文档的问题存在字典中。6、单个文档生成问题的过程。3、单个提问的向量检索。4、单个提问的检索结果。
2025-04-15 17:59:13
550
原创 长文档处理利器:Dynamic-YaRN
但有了动态 YaRN,模型就像用上了“智能望远镜”,可以动态扩展它的“视野”,看到更多的内容,比如4096个单词。动态 YaRN 技术就像是给语言模型配上了一副这样的“智能望远镜”,让模型能够根据需要动态调整它的“视野范围”,从而处理更长的文本。但有了动态 YaRN,模型就像用上了“智能望远镜”,可以动态扩展它的“视野”,看到多个段落的内容,从而更好地理解问题的背景,给出更准确的答案。它就像是一个配备了“智能望远镜”的模型,能够动态调整焦距,处理更长的文本,同时保持对细节的敏感性。如果文本短,就缩小视野。
2025-04-15 10:02:31
335
原创 3D建模模型Neural4D
Neural4D 是一个基于人工智能的3D建模和动画创作平台,它允许用户通过简单的文本或图像输入快速生成高质量的3D模型和动画,极大地简化了3D内容创作的流程,降低了创作门槛,适合设计师、动画师、游戏开发者以及任何对3D创作感兴趣的用户。• 高效创作流程:通过AI技术,用户无需复杂的3D建模软件即可完成创作,提供一键式操作,简化了传统3D建模和动画制作的复杂流程。• AI驱动的3D模型生成:用户可以通过文本描述或上传图像直接生成高质量的3D模型,几秒钟内即可完成复杂的3D对象生成。
2025-04-15 08:45:20
349
原创 RAG你可能只差一个RAGFlow
• 全程无忧、自动化的 RAG 工作流:流线型 RAG 协调,适用于个人和大型企业,可配置的 LLM 和嵌入模型,多种召回方式与融合重排序,直观的 API,便于与业务系统集成。• GitHub 仓库:https://github.com/infiniflow/ragflow https://github.com/infiniflow/ragflow。• 官方文档:https://ragflow.io/docs/dev/ https://ragflow.io/docs/dev/
2025-04-15 08:24:57
614
原创 Second Me + Ollama + Mac M2本地训练
由于ollama chat接口与OpenAI chat接口不兼容,本文尝试使用requests实现ollama本地模型的使用,这样Second Me就也可以使用本地ollama模型来做数据增加及MacOS上进行训练和推理了。
2025-04-10 17:45:00
714
7
原创 AG2多智能体系统:开启智能协作新时代
它提供了一系列功能,包括支持智能体之间的交互、使用大型语言模型(LLM)和工具支持、自主和人工参与的流程,以及多智能体对话模式等。• 对话支持与协作模式:AG2提供了多种对话模式,包括群聊、序列对话等,使得智能体之间的交互更加灵活,且协作模式更加自然和直观。LangGraph基于图的工作流设计,虽然具有高度的灵活性和可定制性,但在对话支持和协作模式的直观性上不如AG2。• 灵活性与定制化:AG2的模块化设计允许开发者根据需求选择和组合不同的模块,实现定制化的智能体系统,灵活性和可扩展性更强。
2025-04-10 08:26:15
383
原创 ollama embedding兼容OpenAI格式
ollama embeddings 端点:/api/embed,而非/embeddings,输出的格式与OpenAI不兼容,下面给出兼容的方式。推荐模型: bge-m3。
2025-04-07 16:31:55
371
原创 基于neo4j存储知识树-mac
修改登录密码,可以使用生成按钮生成密码,连接数据库,默认设置为neo4j://localhost:7687。2、安装neo4j for mac(neo4j-community-5.26.0-unix.tar.gz)1、安装jdk21 for mac(jdk-21_macos-aarch64_bin.dmg)3、使用默认neo4j/neo4j登录。
2025-04-03 15:13:52
481
原创 Oumi开源模型训练平台-mac尝试
Oumi是一个完全开源的平台,可以简化基础模型的整个生命周期——从数据准备和培训到评估和部署。无论您是在笔记本电脑上开发,在集群上启动大规模实验,还是在生产中部署模型,Oumi都能提供您需要的工具和工作流程。🚀使用最先进的技术(SFT、LoRA、QLoRA、DPO等)将模型从10M到405B参数进行训练和微调。🌎在任何地方运行——从笔记本电脑到集群再到云(AWS、Azure、GCP、Lambda等)🤖使用文本和多模态模型(Llama、DeepSeek、Qwen、Phi等)📊跨标准基准全面评估模型。
2025-04-01 15:56:53
170
原创 一行代码支持MCP
通过集成 MCP,你的 FastAPI 应用不仅能被传统客户端调用,还能与支持 MCP 的 AI 代理工具(如 Claude Desktop、Cursor 等)无缝对接,实现更智能的 API 交互。要让 FastAPI 应用支持 MCP(Model Context Protocol),可以使用 FastAPI-MCP 工具,它是一个零配置的工具,可以自动将 FastAPI 应用的端点暴露为 MCP 工具。# 挂载 MCP 服务器到你的 FastAPI 应用。安装 FastAPI-MCP。
2025-03-28 07:38:34
736
原创 OpenManus和OWL如何选?
ollama出结果推荐使用llama3.2(3B)和llama3.2-vision(11B),其它的较大的模型,如:qwen2.5:14b, llama3.1:8b都没有出结果哦。先说结论:推荐使用OWL,比较友好,OpenManus默认使用google引擎。且能出最终的结果哦。
2025-03-27 17:00:36
262
原创 大模型赋能长文本会话质检:开启智能质检新纪元
精心设计的提示词就像一把精准的钥匙,能够引导大模型在处理长文本会话时,将注意力集中在与质检紧密相关的重点信息上。无论是客户与客服之间围绕产品细节的多轮详细咨询,还是团队成员在项目协作中对方案的深入探讨,大模型都能如同一位经验丰富的质检专家,细致入微地分析每一句话的含义,判断其是否符合既定的质检标准。而如今,随着人工智能技术的飞速发展,大模型为这一困境带来了全新的解决方案,有望通过提示词交互迭代的方式,将准确率从 60%显著提升至 80%左右,甚至在个别质检点达到 90%左右,引发行业内的广泛关注与期待。
2025-03-26 08:00:28
409
原创 程序猿的 “新同事”:大模型写代码的 “魔性” 之旅
而大模型呢,没有人类那种 “我快被代码逼疯了” 的情绪波动,它只会按照自己的逻辑,坚持不懈地尝试,直到某一次,代码突然就能正常运行了!你心里已经开始打鼓了,可它呢,跟个没事人似的,继续乐呵呵地改第三版、第四版……它用这种看似 “魔性” 的方式,向我们展示了它在面对未知任务时独特的学习和适应能力,虽然过程让人抓狂,但最终的结果却可能让你眼前一亮,真乃程序猿江湖里的 “奇葩存在”!可神奇的是,这 “家伙” 偏偏不放弃,它就像个对代码爱得深沉的 “痴汉”,不管报错多么 “辣眼睛”,它都乐此不疲地尝试、调整。
2025-03-26 07:29:32
166
原创 正视大模型的缺点,利用大模型的优点。
• 训练数据问题:大模型的训练数据多来自互联网,数据质量参差不齐,可能存在错误、偏见或不完整的情况,导致模型学习到不准确的信息。• 模型架构与训练过程:大模型的复杂架构和训练方式,使得它在处理信息时更依赖于预训练阶段积累的知识,而容易忽略实时的上下文信息。• 输入数据的多样性:不同的输入数据可能触发模型的不同响应模式,尤其在数据分布变化较大的情况下,模型的输出稳定性会受到影响。• 训练过程中的随机性:大模型的训练过程涉及大量的参数调整和随机采样,导致模型在不同训练阶段的表现存在波动。
2025-03-26 06:36:44
767
原创 微调0.5 B-32B模型要达到85%的准确率需要的数据和资源-会话质检和会话小结
此时的模型如同一位行业大师,需要海量的数据来微调其对对话细节的把握,从而在质检和小结任务中达到极高的准确率,处理各种罕见和复杂的对话情况。这是人工智能领域的巨无霸,需要海量的高质量数据来微调其复杂的参数,以在最复杂的对话场景中达到卓越的性能,满足高标准的质检和小结要求。选择合适的模型规模和相应的资源配置,能够让您在人工智能应用的道路上事半功倍,轻松应对各种复杂场景,为您的业务发展提供强大的智能支持。这相当于一条小河,能够处理更长的对话内容,适合中等复杂度的对话场景,如一般的业务洽谈和多轮对话。
2025-03-25 20:32:57
449
原创 DS-R1 32B vs QwQ 32B vs Gemma3 27B
• 适用场景:适合在96GB内存的Mac上运行,但需要注意散热,尤其是在长时间运行复杂任务时。• 适合需要详细、结构化、全面解决方案的场景,尤其是编程任务,中文能力很强,但发热可能稍高。• 适用场景:适合在96GB内存的Mac上运行,尤其适合需要快速响应的任务。• 适用场景:适合在96GB内存的Mac上运行,尤其适合需要快速推理的任务。• 适合需要快速、高效、简洁回答的场景,推理能力强,中文能力出色,发热较少。• 适合资源受限的设备,推理能力强,但中文能力相对较弱,发热较少。
2025-03-23 13:19:04
756
原创 与人工智能沟通的技巧
但如果明确指出:“为一款面向年轻群体的运动手表撰写一篇 800 字的推广文案,风格轻松幽默,突出产品的智能功能和时尚外观”,AI 就能精准输出符合要求的内容。例如,一位编辑在审阅 AI 生成的文章时,详细指出:“这部分内容很好,但这里的逻辑不够清晰,需要重新组织一下。总之,人工智能是一个强大的工具,但只有通过有效的沟通和精准的需求对齐,才能真正发挥它的价值。在编程领域,不同的 AI 编程助手也有各自的优势。工程师在与 AI 的多次互动中,不断调整指令,优化专利申请文件的结构和内容,最终成功提交了专利申请。
2025-03-22 08:36:58
577
原创 GPT-4o微调SFT及强化学习DPO数据集构建
假设,已经标注的强化学习数据集df包含用户输入、首选输出、次选输出三列。假设,已经标注的训练数据集df包含了提示词、输入和输出三列。注意:强化学习DPO通常在微调SFT的模型上进行。
2025-02-12 16:33:43
525
原创 GRPO强化学习尝试-训练自己的R1推理模型
DeepSeek-R1以其低成本优势(训练成本只有国外模型的1/5,推理成本在优惠期间是01的1/27)在春节期间🔥遍全球,是否你也想使用自己的数据去训练一个R1模型呢?下面给出了这个训练的过程。说明3: 说明通过强化学习,模型不仅能根据Answer(正确奖励)自行完成推理推理,而且还能按格式(格式奖励)输出推理过程和答案。说明2: 在62轮之后,推理过程被格式化了,推理过程出现在标记中,答案出现在标记中。说明1:在62轮之前的推理输出,推理过程是没有格式化的。
2025-02-11 15:13:27
948
3
原创 DeepSeek_R1论文播客版
欢迎来到《AI前沿》,我是主持人Alex。今天我们有幸邀请到AI领域的专家Dr. Li,来和我们聊聊最近大热的DeepSeek-R1模型。Dr. Li,欢迎来到节目! 谢谢Alex,很高兴能和大家分享DeepSeek-R1的研究成果。 DeepSeek-R1最近在AI圈引起了不小的轰动,尤其是它在推理能力上的突破。能先给我们简单介绍一下这个模型的核心特点吗? 当然可以。DeepSeek-R1最特别的地方在于它完全依赖强化学习(RL)来提升推理能力,而不是传统的监督微调(SFT)。简单来说,它像是一个自学成才
2025-01-24 15:41:50
849
原创 DeepSeek_R1论文翻译稿
推理任务:(1) DeepSeek-R1 在 AIME 2024 上获得了 79.8% 的 Pass@1 分数,略微超过了 OpenAI-o1-1217。在 MATH-500 上,它获得了令人印象深刻的 97.3% 的分数,与 OpenAI-o1-1217 相当,并显著优于其他模型。(2) 在编码相关任务中,DeepSeek-R1 在代码竞赛任务中表现出专家水平,它在 Codeforces 上获得了 2,029 Elo 评分,超过了 96.3% 的人类参赛者。
2025-01-24 15:08:14
1568
原创 使用Dify创建智能体的一次尝试
广义上讲,包括自动驾驶、机器臂、机器人都属于智能体,另外一种是基于流程编排的智能体,如本文所要实现的智能体,流程和技能都是预先设置好的。下面以使用本地ollama模型,基于代理人根据客户个人信息提供风险图谱、风险呈现与法律依据和优先级风险与解决方案的需求做了一次尝试,给出具体的实现过程,希望对你有所帮助。Dify是一个流程编排的工具,支持RAG和Chat聊天,支持对接各种在线大模型和本地大模型接入,包括视频、音频模型(在线或本地)的接入。5、结合知识库检索的结果和客户信息及提示词输出风险图谱的结果。
2025-01-17 17:30:49
3346
原创 使用Dify创建个问卷调查的工作流
一个基于流程的智能体的实现,特别是基于业务的实现,使用Dify去实现时,通常都是一个对话工作流,当设计到相对复杂一些的流程时,如果将所有逻辑都放在对话工作流中去实现,那么这个对话工作流是比较复杂的,涉及的组件会很多,看上去就比较复杂,就和咱们使用程序实现某个功能时,需要模块化一样,一个工作流就对应于一个相对独立的功能模块,可以简化主模块对话工作流的复杂度,便于修改和维护,同时也可以方便重用。如:心理测试、教学考试。5、条件判断,为了演示方便,设置为常量3,实际应该设置为变量count(有20道题)
2025-01-17 17:30:26
4043
3
winsock全双工多客户端通信
2006-09-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人