使用Dify访问数据库(mysql)

1、在本地搭建数据库访问的服务,并使用ngrok暴露到公网。

#sql_tools.py

from flask import Flask, request, jsonify
import mysql.connector

# 数据库连接配置
config = {
    'user': 'your_username',
    'password': 'your_password',
    'host': 'localhost',
    'database': 'your_database',
    'raise_on_warnings': True
}

# 初始化Flask应用
app = Flask(__name__)

# 连接数据库
def connect_to_database():
    try:
        conn = mysql.connector.connect(**config)
        print("Connected to MySQL database")
        return conn
    except mysql.connector.Error as err:
        print(f"Error: {err}")
        return None

# 执行SQL查询
def execute_query(conn, sql):
    cursor = conn.cursor()
    try:
        cursor.execute(sql)
        if sql.strip().lower().startswith("select"):
            # 如果是查询操作,返回结果
            result = cursor.fetchall()
            return result
        else:
            # 如果是插入、更新、删除操作,提交事务并返回受影响的行数
            conn.commit()
            return cursor.rowcount
    except mysql.connector.Error as err:
        print(f"Error executing SQL: {err}")
        return None
    finally:
        cursor.close()

# HTTP接口:执行SQL
@app.route('/execute', methods=['POST'])
def execute_sql():
    # 获取请求中的SQL语句
    data = request.json
    if not data or 'sql' not in data:
        return jsonify({"error": "SQL statement is required"}), 400

    sql = data['sql']
    conn = connect_to_database()
    if not conn:
        return jsonify({"error": "Failed to connect to database"}), 500

    # 执行SQL
    result = execute_query(conn, sql)
    conn.close()

    if result is None:
        return jsonify({"error": "Failed to execute SQL"}), 500

    # 返回结果
    return jsonify({"result": result})

# 启动Flask应用
if __name__ == '__main__':
    app.run(host='0.0.0.0', port=3000)

2、创建知识库,导入表结构描述。

3、创建数据库访问工作流。

代码执行:


import requests
def main(sql: str) -> dict:
    # 定义API的URL
    url = "https://xxx.ngrok-free.app/execute"

    # 构造请求体
    payload = {
        "sql": sql
    }

    # 发送POST请求
    try:
        response = requests.post(url, json=payload)
    
        # 检查响应状态码
        if response.status_code == 200:
            # 解析响应数据
            result = response.json()
            return {
                "result": f"{result}"
            }
        else:
            return {
                "result": f"请求失败,状态码:{response.status_code},{response.json()}"
            }
    except requests.exceptions.RequestException as e:
        return {
            "result": f"请求异常:{e}"
        }

4、创建数据库智能体

方法二:在执行代码中直接访问mysql
import pymysql
def execute(sql):
    #具体实现
def main(sql):
     #调用execute(sql)
但需要增加配置:
1、dify/docker-legacy/volumes/sandbox/dependencies/python-requirements.txt 里面增加pymysql这个依赖
2、dify/docker/ssrf_proxy/squid.conf.template 里面增加对数据库IP及端口的访问权限。

参考:若是非localnet,可以使用devnet。

<think>嗯,用户想了解如何通过Dify进行数据库调用,包括方法、示例和文档教程。首先,我需要回忆一下Dify的相关功能和文档内容。根据提供的引用,特别是引用[1]和引用[3],Dify涉及到数据库配置和向量数据库使用。用户提到的数据库调用可能包括配置数据源、连接外部数据库,或者在应用中使用数据库数据。 首先,Dify的.env文件中有DATABASE_URL的配置项,默认使用SQLite,但也可以改为PostgreSQL或其他数据库。这说明系统本身需要连接数据库来存储应用数据。用户可能想知道如何修改这个配置,比如更换数据库类型或者设置连接字符串。 其次,引用[3]提到向量数据库在RAG应用中的重要性,用于存储和搜索上下文数据。这可能涉及到在Dify中集成向量数据库,如Chroma或Milvus,来处理非结构化数据。用户可能需要知道如何在Dify中配置这些向量数据库,以及如何通过API进行数据操作。 另外,引用[2]提到在Dify中调用Baichuan模型,这可能需要通过API密钥配置,类似地,数据库调用可能涉及API或SDK的使用。用户可能需要具体的代码示例,比如如何通过Dify的接口查询数据库,或者如何在提示词编排中使用数据库中的数据。 需要确认Dify的官方文档是否有相关教程,但根据现有引用,可以推测步骤可能包括修改.env文件中的数据库配置,使用数据集功能导入数据,或者通过自定义代码调用外部数据库。比如,在提示词编排中,可能通过变量替换从数据库获取数据,或者使用HTTP请求调用外部API访问数据库。 用户可能遇到的困难包括如何正确配置DATABASE_URL,如何处理不同数据库的驱动,或者如何在应用中实时查询数据库。需要提供具体的示例,比如修改.env中的PostgreSQL连接字符串,或者使用Python代码在Dify中执行SQL查询。 同时,应该提醒用户注意权限和安全性,确保API密钥和数据库凭证的安全。可能还需要提到Dify的数据集功能,允许用户上传数据并通过模型处理,这可以视为一种数据库调用的方式,比如将CSV数据导入后,在提示词中使用这些数据。 总结回答结构:先介绍数据库配置方法,包括系统数据库和向量数据库;然后给出调用外部数据库的示例,如使用HTTP连接器或自定义代码;最后提供文档指引和注意事项。确保每个步骤都有具体示例,如代码片段或配置修改,并引用相关引用内容支持说明。</think>### Dify数据库调用方法详解 Dify数据库调用主要分为两类:系统数据库配置和外部数据库集成。以下是具体操作方法和示例: --- ### 一、系统数据库配置(基础配置) 1. **修改`.env`文件** 在Dify安装目录中找到`.env`文件,修改数据库连接字符串: ```env # 默认SQLite配置 DATABASE_URL=sqlite:///dify.db # 改为PostgreSQL示例 DATABASE_URL=postgresql://user:password@localhost:5432/dify_db ``` 支持MySQL、PostgreSQL等主流数据库[^1]。 2. **重启服务** ```bash docker-compose down && docker-compose up -d ``` --- ### 二、外部数据库集成(应用级调用) #### 方法1:通过HTTP连接器调用API ```python # dify自定义代码示例 import requests def query_database(user_id): response = requests.post( "https://your-database-api.com/query", json={"user_id": user_id}, headers={"Authorization": "Bearer YOUR_API_KEY"} ) return response.json()["data"] # 在提示词中调用 prompt = f""" 用户{{user_input}}的历史记录是:{query_database(user_id)} """ ``` #### 方法2:直接连接数据库(需安装驱动) ```python # 在Dify的代码节点中添加 import psycopg2 conn = psycopg2.connect( dbname="mydb", user="user", password="password", host="localhost" ) cursor = conn.cursor() cursor.execute("SELECT * FROM products WHERE id = %s", (product_id,)) result = cursor.fetchall() ``` --- ### 三、向量数据库集成(RAG场景) 1. **配置向量数据库** 在`.env`中设置: ```env VECTOR_STORE_TYPE=chroma # 可选chroma/milvus CHROMA_URL=http://chroma:8000 ``` 2. **数据上传与检索** ```python # 通过Dify数据集功能上传数据 from dify_client import Dataset dataset = Dataset.create("product_info.csv") dataset.upload() # 在提示词中自动检索相关上下文 prompt = "请根据产品库回答:{{query}}" ``` --- ### 文档指引 1. 官方数据库配置文档:`https://docs.dify.ai/getting-started/install/configuration#database` 2. HTTP连接器教程:`https://docs.dify.ai/advanced/connectors/http` 3. 数据集管理指南:`https://docs.dify.ai/advanced/data-sets` ---
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jacky_wxl(微信同号)

喜欢作者

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值