
知识库
RAG(检索增加生成)
jacky_wxl(微信同号)
生命如昙花一现,愿每一段行程象如歌的行板,灿烂而又真实!微信在线咨询服务费:200元/小时,非诚勿扰。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
dify知识库支持图文回复实践
Dify知识库支持图文混排输出,以Word文档为例,实现步骤如下:首先,准备一个包含图文的Word文档,如“XXX用户使用手册.docx”,文档解析后会显示图片标记,如。其次,编写有效的提示词,建议使用支持视觉处理的大模型,以确保图文内容的准确解析和输出。最后,通过模型处理,实现图文并茂的回复效果,提升用户交互体验。原创 2025-05-16 17:40:22 · 1536 阅读 · 1 评论 -
AI 商业落地的艰难探索:从大模型到智能体的坎坷之路
例如在智能客服场景中,当用户提问时,RAG 架构可以先从企业的知识库中检索与问题相关的准确信息,再由大模型生成回答,从而减少幻觉现象的发生。这就像是一场赌局,AI 在商业落地的道路上不断地尝试各种方案,从大模型到 RAG、长文本,再到智能体,每一次的尝试都像是在赌一次新的机会,希望能够解决之前的问题,真正实现商业价值。在人工智能的发展历程中,大模型的出现无疑是一次重大的技术突破,其展现出了超乎想象的强大能力,从自然语言处理到图像识别,再到各种复杂任务的解决,似乎都能轻松应对。原创 2025-05-13 08:36:39 · 427 阅读 · 0 评论 -
根据pdf文档生成问答并进行检索评估
1、将pdf放在opeai_blog_pdfs目录下,引用依赖。5、生成问题列表,这里需要注意chunk的大小及重合。目标是根据pdf文档生成问答,并进行检索评估。8、把所有问题存储在rows列表中。2、上传pdf文件,创建向量库。7、把所有文档的问题存在字典中。6、单个文档生成问题的过程。3、单个提问的向量检索。4、单个提问的检索结果。原创 2025-04-15 17:59:13 · 591 阅读 · 0 评论 -
RAG你可能只差一个RAGFlow
• 全程无忧、自动化的 RAG 工作流:流线型 RAG 协调,适用于个人和大型企业,可配置的 LLM 和嵌入模型,多种召回方式与融合重排序,直观的 API,便于与业务系统集成。• GitHub 仓库:https://github.com/infiniflow/ragflow https://github.com/infiniflow/ragflow。• 官方文档:https://ragflow.io/docs/dev/ https://ragflow.io/docs/dev/原创 2025-04-15 08:24:57 · 740 阅读 · 0 评论 -
销售三步法构建知识树的例子
【代码】销售三步法构建知识树的例子。原创 2025-04-03 16:55:14 · 300 阅读 · 0 评论 -
基于neo4j存储知识树-mac
修改登录密码,可以使用生成按钮生成密码,连接数据库,默认设置为neo4j://localhost:7687。2、安装neo4j for mac(neo4j-community-5.26.0-unix.tar.gz)1、安装jdk21 for mac(jdk-21_macos-aarch64_bin.dmg)3、使用默认neo4j/neo4j登录。原创 2025-04-03 15:13:52 · 503 阅读 · 0 评论 -
知识树创建更新与保存
【代码】知识树创建更新与保存。原创 2025-03-31 09:53:53 · 196 阅读 · 0 评论 -
基于知识树的知识库构建与查询的例子
【代码】基于知识树的知识库构建与查询的例子。原创 2025-03-28 17:45:43 · 249 阅读 · 0 评论 -
支持多语言的语义问答检索系统
本系统基于Faiss和SBert模型(sentence-transformers/paraphrase-multilingual-mpnet-base-v2,支持50种语言)实现,可以满足私有化场景下的NLP问答需求,问答可以来自于大模型的模拟生成,也可以来自专业人员的录入或是RAG场景的生成,以满足低成本、私域场景下的问答需求。考虑到业务场景的隔离,加入了client_id,bussiness_id, product_id进行索引的分开存储,避免相互影响,同时对新增的问答对使用了过滤,避免重复。原创 2024-12-04 15:09:34 · 446 阅读 · 0 评论 -
使用langchain及openai创建本地知识库
3. 将知识文件放在kb目录下,以.txt或.doc或.pdf文件的形式存在。5.登录app界面 localhost:8500开始提问吧。2.设置openai api key。原创 2023-05-11 10:58:37 · 3028 阅读 · 3 评论 -
如何提升RAG检索的准确率及答案的完整性?
为了照顾短答案,使用分片长度为100,重叠50,来提升检索提问上下文定位的准确率,并提升分片的完整度(不能完全保证)。至于重排模型,可用可不用,个人认为作用不大,使用重排模型的主要目的是因为检索不准确,检索准确了,重排的意义就不大,检索不准确的主要原因是以考虑到检索的速度,降低了一定的准确度,但当分片设置的比较小时,检索的准确率就提升上来了。大家有没有发现开源RAG的默认分片长度为250, 重叠为50,但是存在检索准确率不高(找不到答案或找到的上下文无法回答该问题)和答案不完整(答案有缺失)的问题。原创 2024-09-15 11:39:55 · 980 阅读 · 0 评论