视频会议的混音算法

本文探讨了视频会议中音频混音算法面临的挑战,如采样量化溢出导致的噪声。介绍了最简单的线性叠加算法及其溢出问题,提出了一种改进的混音算法,通过动态衰减因子来降低失真度,提高语音质量。实测表明,该方法在混音多路音频流时能有效抑制背景噪音和爆破音,保持语音清晰可辨,适用于视频会议场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  在多媒体会议中,音频互动是基本的要素之一,它是多媒体会议中最基本的要素.由于在分组网络中没有QoS,所以网络的拥塞导致了端到端通信的语音丢包和延时抖动等问题同时,多个端点同时相互发送数据更进一步增加了网络传输的负担,并且增加语音通信中数据收发的随机性和波动性.而语音互动的实时性要求远远高于多媒体会议中的其他要素,比如视频和数据.因为视频和数据在相对较长的时延内的抖动都是可以被用户接受的,而音频部分如果时间稍长,就会产生很明显的断续感,以致用户根本无法分辨语音所承载的语义从而严重影响沟通.为了解决这一问题,使用多点处理单元(MCU)对语音信号进行混音,则降低了网络传输的负担,对于每个端点的处理能力的需求也大大降低. 但是在常见的处理算法中,一般会因为多路语音信号采样量化数据叠加后超出量化上限, 而导致不得不采用饱和运算将其变更为量化上限,这样就引入了新的噪声. 为确保混音输出音频流的波形尽量表现出各路输入音频流的波形包络, 降低失真度, 如何处理量化上限溢出是一个关键的问题. 在前一阵子的实践摸索中大致在这一方面有一些认识, 也搜集整理了一些资料, 故在此将一些原先零散的碎片集中, 方便以后的查阅和进一步的探索.
 
[注:以下内容系资料整理集中, 参考了《视频会议中混音后溢出问题的研究及解决方法》·马旋 王衡 汪国平 董士海 等]
一、最简单的混音算法
  现在一般的软件混音算法是对输入的音频数据进行线性叠加, 即:
       (1)

或者叠加以后再取平均值:
       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值