PGD 中 min-max 问题

本文深入探讨了Madry等人提出的PGD对抗训练方法,该方法旨在增强模型对抗攻击的鲁棒性。通过最大化内部损失函数,攻击者寻找对抗样本,而防御者则努力最小化由此产生的损失。尽管PGD训练能有效抵御多种攻击,但其生成对抗样本的成本高昂。文章从攻击者和防御者的角度阐述了这一优化问题,并讨论了其在实际应用中的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. min-max 问题

为解决基于迭代方法生成的对抗样本攻击,Madry等人[2]提出PGD对抗训练方法,并从鲁棒优化的角度研究模型的对抗鲁棒性以及给出对抗鲁棒性的统一观点。对抗样本的攻击防御问题总结如式(2.1)所示:
在这里插入图片描述

其中x为原始样本,δ为扰动信息,S为扰动信息的集合,y为原始样本x的正确标签,D是数据(x,y)满足的分布,θ是模型参数,对式(2.1)的优化可分别从攻击者和防御者的角度展开。攻击者希望内部的损失函数最大化,目的是找出有效的对抗样本。防御者希望外部的优化问题最小化,目的是减小对抗样本造成的损失函数升高。基于PGD对抗训练方法所得到的模型能够有效防御多种类型攻击,然而该方法存在严重的缺陷,即生成PGD对抗样本的成本太高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值