论文来源:检索-中国知网
1、引言概述
从2015年至今,运动目标检测与跟踪发展迅速,一直以来不断有新的目标检测与跟踪算法被提出,例如:Kalma算法、UPDT算法等,其中卡尔曼滤波算法就是一种功能强大的算法,它采用背景减法方法来检测视频中的运动物体,通过卡尔曼滤波器预测并估计物体的下一个状态,移动目标检测的定义是将移动目标与背景分离,获取目标的运动信息与位置,准确并实时标记运动目标。
目标跟踪算法的改进主要从来两个方面来实施:
①基于网络的改进,例如:SimRPN++算法、DLT 算法等;
②结合相关滤波器,包括 ECO 算法、C-COT 算法等。
但是在复杂环境条件下进行运动目标跟踪时,为了提升跟踪的稳定性,面临着许多挑战,诸如:形态变化、速度变化、尺度变化、图像模糊等等。
2、标准的Kalman滤波器检测原理
Kalman 滤波器其实是一组数学方程,它通过最小化平方误差均值的方式,实现一种有效的计算递归方法来估计运动目标的状态。 卡尔曼滤波器的方程可以分为两组:预测方程和校正方程:
①预测方程负责提前预测当前状态估计
其中 ^ x k 定义为时间 k