💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
关键技术:光谱近邻算子(Spectral Proximity Operator)
💥1 概述
在该论文中,描述了超光谱宽带相位恢复的新型制定方法。该方法适用于对象和调制相位掩模均呈光谱变化的情形。所提出的算法基于交替方向乘法器(ADMM)的复数域版本,以及针对高斯和泊松观测导出的光谱近邻算子(SPO)。这些算子的计算被简化为解一组立方(对于高斯)和二次(对于泊松)代数方程。这些近邻算子解决了两个问题。首先,从计算为信号光谱强度之和的总强度观测中提取了信号的复数域光谱分量。通过这种方式,实现了对总强度的光谱分析。其次,过滤了噪声观测,包括噪声强度观测及其预测的对应物。能够解决超光谱宽带相位恢复问题并找到光谱变化的对象,主要由对象和图像形成算子的光谱特性决定。模拟测试表明,该制定方案中的相位恢复可以成功解决。
摘要:本文针对对象和调制相位掩模均呈光谱变化的情况,提出了超光谱宽带相位恢复方法。所提出的迭代算法基于交替方向乘法器(ADMM)的复数域版本以及针对高斯和泊松多强度观测导出的新型光谱近邻算子。这些近邻算子解决了两个问题。首先,从计算为衍射模式光谱强度之和的总强度观测中提取了对象的复数域光谱分量。其次,过滤了噪声观测,包括噪声强度观测及其预测的对应物。模拟和物理测试证实,所提出的超光谱宽带相位恢复方法可以成功解决。
关键词:复数域逆向成像、复数值图像去噪、超光谱相位恢复、相位成像、复数值正则化、光谱近邻算子、算法
一、复数值图像去噪的基本方法
复数值图像(如实部-虚部构成的复数矩阵)的去噪需同时处理幅度与相位信息。主要技术分为两类:
- 实部/虚部分离处理
- 对复数图像的实部和虚部分别应用传统去噪算法,再组合结果。例如:
- BM3D算法:通过分组相似图像块进行3D变换域协同滤波,抑制噪声并保留细节 。
- 低秩表示:利用自然图像的局部低秩特性(如奇异值分解SVD),分离噪声(稀疏奇异值)与信号 。
- 局限性:忽视复数值的相位相关性,可能导致相位信息失真。
- 复数域联合优化
- 直接建模复数域的噪声分布,引入复数域正则化项(如复数值TV正则化)。
- 优势:保持相位一致性,适用于干涉测量、合成孔径雷达(InSAR)等相位敏感场景。
二、ADMM算法原理及其在图像处理中的应用
ADMM基本原理
ADMM(交替方向乘子法)是解决带约束优化问题的高效框架,形式为:
在图像处理中的优势
- 处理非光滑项:兼容TV正则化、稀疏约束等非可微目标函数。
- 并行性:子问题可并行求解(如分块图像处理)。
- 应用案例:
- 3D彩色图像恢复:加权L1L1范数诱导稀疏性,ADMM求解椒盐噪声去除 。
- 人脸正面化:联合优化低秩清洁图像与稀疏误差 。
挑战
- 收敛性依赖参数 ρρ 和初值选择;
- 非线性约束需额外处理 。
三、超光谱宽带相位恢复(HSBPR)关键技术
问题定义
目标:从多光谱强度观测中恢复物体的复数域光谱分量 u(λ)(含幅度 A(λ) 和相位 ϕ(λ)),适用于光谱变化物体和调制相位掩模 。
核心挑战
- 病态逆问题:强度观测 I(λ)=∣Hu(λ)∣2 丢失相位信息;
- 噪声敏感:宽光谱导致低信噪比(SNR),尤其在高频波段;
- 光谱耦合:物体与掩模的光谱变化需联合建模 。
关键技术:光谱近邻算子(Spectral Proximity Operator)
- 数学定义:
其中 f 为复数域正则项(如稀疏性约束)。
- 在HSBPR中的作用:
- 噪声过滤:对高斯或泊松噪声观测进行加权聚合,平衡预测值与实测值 ;
- 光谱解耦:从总强度观测 ∑λI(λ)∑λI(λ) 中分离各波段复数分量 。
物理意义
- 光谱相似性约束:利用相邻波段的光谱相关性,构建图信号模型(如 τi,jwτi,jw 表示光谱近邻连接);
- 低秩先验:光谱立方体的波段间相关性可表示为低秩矩阵 。
四、定量相位成像(QPI)的核心挑战
QPI通过干涉测量无标记获取生物样本的光学厚度信息,但面临:
- 噪声与像差:活体样本运动、热漂移导致时变像差 ;
- 散射干扰:厚组织散射降低相位重建精度 ;
- 缺乏化学特异性:需结合荧光标记或Brillouin散射增强特异性 ;
- 计算效率:传统迭代算法(如Gerchberg-Saxton)收敛慢 。
五、ADMM与光谱近邻算子的联合应用案例
超光谱宽带相位恢复(HSBPR)
- 问题建模:
- ADMM分解:
- 子问题1:求解复数域线性系统(FFT加速);
- 子问题2:光谱近邻算子实现噪声过滤与光谱解耦 。
- 实验结果:
- 仿真测试:在100个光谱通道、低SNR条件下,相位误差降低40% ;
- 物理验证:成功恢复生物细胞的相位轮廓,信噪比提升至25dB 。
复数值图像去噪
- 联合正则化:ADMM框架下,光谱近邻算子处理波段间相似性,TV正则化保持空间边缘 ;
- 优势:优于实部/虚部分离处理,PSNR提升2–4dB 。
六、未来方向与挑战
- 算法优化:
- 自适应参数选择(如残差白化原则)提升ADMM收敛速度 ;
- 图神经网络(GNN)建模光谱空域关联 。
- 硬件-算法协同:
- 自适应光学实时校正像差(如环形照明FPM系统);
- 计算成像(如单像素探测)降低硬件成本 。
- 人工智能融合:
- 物理驱动UNet替代迭代优化,解决QPI效率问题 ;
- 生成对抗网络(GAN)增强低信噪比相位重建 。
结论
ADMM与光谱近邻算子的结合为复数值图像去噪和超光谱相位恢复提供了统一框架:
- ADMM 解决非光滑约束的分布式优化;
- 光谱近邻算子 嵌入光谱先验,增强噪声鲁棒性;
- 应用价值:推动无标记生物成像(如神经元活动监测 )、材料检测(如半导体晶圆相位轮廓 )的高精度量化分析。
📚2 运行结果
部分代码:
%--------- (2) hyperspectral propagation with masks included ----------------
A = @(wf,Masks) ifft2(arrayIshift(AS.*(arrayshift(fft2(conj(Masks).*wf))))); % forward propagation
At = @(wf, Masks) Masks.*ifft2(arrayIshift(conj(AS).*arrayshift(fft2(wf)))); % backward propagation
%% Observations model
%-------preallocations-----------------------------------------------------
B = zeros(LL,KK,K,T);
BB = zeros(LL,KK,K,T);
D = zeros(LL,KK,K,T);
Y = zeros(LL,KK,T);
Z = zeros(LL,KK,T);
%-------observations creation ---------------------------------------------
for t = 1:T %create observations for each mask
Masks = (Masks_set(:,:,:,t));
B(:,:,:,t) = A(x,Masks); % HS wavefront propagated to sensor
Y(:,:,t) = sum((squeeze(abs(B(:,:,:,t)))).^2,3); % noiseless obesrvation summed along wavelengths
if do_poisson_noise % Poisson noise Intensity Observations
Z(:,:,t) = poissrnd(Y(:,:,t)*kappa);
SNR(t) = 10*log10(sum(kappa^2*Y(:).^2)/sum((Y(:)*kappa-Z(:)).^2));
else % Gaussian noise Intensity Observations
Z(:,:,t) = Y(:,:,t)+randn(size(squeeze(Y(:,:,t))))*sigma;
SNR(t) = 10*log10(sum(Y(:).^2)/sum((Y(:)-Z(:)).^2));
end
fprintf ('.')
end
%% Reconstruction Algorithm
%------------(1) Random Initialization ------------------------------------
x_phase = rand(size(x));
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。