1x1 卷积不管是不是最早出现在 Network In Network (NIN),这都是一篇很重要的文章,两点贡献:
- mlpconv, 即引入 1x1 卷积。
传统的 CNN 的一层卷积层相当于一个线性操作,如下图 a,所以只提取了线性特征,隐含了假设特征是线性可分的,实际却并非如此,NIN 中引入 下图 b 中的 mlpconv layer,实质是像素级的全连接层,等价于 1x1 卷积,在其后跟 ReLU激活函数,引入更多的非线性元素。
- 将 CNN 中的全连接层,采用 global average pooling 层代替。
全连接层容易过拟合,减弱了网络的泛化能力。
在这之后,另一个经典的网络 GoogLeNet 的 Inception 结构中沿用了 NIN 中的 1x1 操作,如下图。是金子总会发光,然后是被应用到各个网络中去。
- 1x1 卷积作用
降维和升维:
简单的解释降维,例如,input 的 feature maps 是 16x16,channel=32,通过 一个 1x1,filters 数量为 8 卷积层,output 为 16x16x8。