【计算机视觉面经一】 1x1卷积的介绍与用处

1x1 卷积不管是不是最早出现在 Network In Network (NIN),这都是一篇很重要的文章,两点贡献:

  • mlpconv, 即引入 1x1 卷积。

传统的 CNN 的一层卷积层相当于一个线性操作,如下图 a,所以只提取了线性特征,隐含了假设特征是线性可分的,实际却并非如此,NIN 中引入 下图 b 中的 mlpconv layer,实质是像素级的全连接层,等价于 1x1 卷积,在其后跟 ReLU激活函数,引入更多的非线性元素。

  • 将 CNN 中的全连接层,采用 global average pooling 层代替。

全连接层容易过拟合,减弱了网络的泛化能力。

在这里插入图片描述
在这之后,另一个经典的网络 GoogLeNet 的 Inception 结构中沿用了 NIN 中的 1x1 操作,如下图。是金子总会发光,然后是被应用到各个网络中去。

在这里插入图片描述

  • 1x1 卷积作用

降维和升维:

简单的解释降维,例如,input 的 feature maps 是 16x16,channel=32,通过 一个 1x1,filters 数量为 8 卷积层,output 为 16x16x8。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值