- 博客(8)
- 收藏
- 关注
原创 解释ResNet代码,而且一步一步教你怎么跑通!提供完整数据集和代码
ResNet网络用到了残差块,可以看一下上篇简单了解。上一篇。如果重新训练模型的话会很慢,我选择直接用官网训练好的模型参数进行微调就行(就是直接加载参数,然后训练批次小一点,效果就很好),官网的这个网络是做图像分类的。
2024-12-04 18:54:05
1808
2
原创 什么?不会创新?那就看这几个网络是如何创新的!轻量级网络-ResNet、MobileNet、MobileNetv2、ResNeXt、ShuffleNet v1。
a、b、c它们在数学计算上完全等价,只是三种不同的方式而已,(b)中的concatenate就是连接的意思,上一层每一个分组的输出通道数都是4,然后把他们简单连接起来,32组,那就变成了一个输出通道数是128的feature map。正常的卷积就是每个输入通道都有一个对应的卷积核,这些卷积核在所有输入通道上进行相乘相加,滑动窗口操作。对于蓝色框来说,就是正常的卷积-激活-卷积的操作,残差连接就是让操作之前的图和你卷积之后的图进行相加,再激活输出,这就让网络有一部分输出是跳跃了部分的卷积层。
2024-12-04 17:21:26
1065
原创 超详细,搭建网络代码解析,使用PyTorch手动搭建AlexNet网络进行图像分类实践
尽量自己编写一次代码,这样会对深度学习的网络框架有更深理解。操作系统:Ubuntu 18.04 / Windows 10编程语言:Python 3.7+深度学习框架:PyTorch 1.6+编译器:IDE(如PyCharm)或Jupyter Notebook计算机硬件配置:NVIDIA GPU(如CUDA兼容的显卡)推荐,但CPU也可运行相关库:torchvision, numpy, matplotlib等需要对网络先有个基础认识,如果你知道,可以直接跳过去看代码部分。
2024-11-21 21:33:02
1845
1
原创 自然语言处理-命名实体识别实验(CRF条件随机场实现)
一、概念命名实体识别(Named Entity Recognition,NER)中的“命名实体”一般是指文本中具有特别意义或者指代性非常强的实体,可分为三大类(实体类、时间类和数字类)和七小类(人名、机构名、地名、时间、日期、货币和百分比)。命名实体识别的任务就是识别出文本中的命名实体,通常分为两个过程:实体边界识别和实体类别的确定。二、问题转化中文命名实体识别的本质就是序列标注。设定3种命名实体标注符号分别代表人名、地名、机构名;3种命名实体标注符号分别代表实体开始、实体中间、其它。
2024-11-18 20:02:42
1536
原创 数据挖掘之FP-growth算法matlab代码
它通过构造一个称为**FP树(Frequent Pattern Tree)**的数据结构来表示数据库中的频繁模式,从而避免了传统Apriori算法频繁生成候选项集的问题。在FPGrowth函数中使用的一个子函数,用于判断两个集合(数组)是否相同,无论元素的排列顺序如何。输出结果是一个树形结构图,用于展示 FP 树的层次关系和每个节点的支持计数。扫描数据库,统计每个项的支持度(频数),并根据设定的最小支持度阈值筛选出频繁项。否则添加一个新节点。的结构,显示每个节点的名称和计数,以及节点之间的层级关系。
2024-11-16 20:43:38
1272
原创 并行程序设计-访存优化实验
然而这两个数据却分别被两个核上的线程所操作,Arr[0] 在核0的线程0中被使用,Arr[1]在核1的线程1中被使用,这两个数据既被缓存到核0的L1 缓存中,又被缓存到核1的L1 缓存中,如果线程0修改了Arr[0]的内容,那么缓存一致性协议就会使核心1 的这行数据无效,导致线程1发生缓存不命中,同样的过程也会发生在线程1修改Arr[1]的时候。根据上述代码以及示意图,可以看的出来,如果当缓存能够放下整个z矩阵,以及y矩阵的一行的N个元素,则循环对于数组访问的命中率会较高。
2024-11-15 17:52:55
1058
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人