年份 |
标题 |
是否采用辅助分类损失lossauxiliary |
主损失lossmain
|
总loss |
备注 |
CVPR 2015 |
Fully Convolutional Networks for Semantic Segmentation |
否 |
Softmax loss |
lossmain |
|
CVPR 2017 |
Semantic Segmentation--Pyramid Scene Parsing Network(PSPNet) |
是/ Softmax loss, |
Softmax loss |
lossmain +0.4lossauxiliary |
|
CVPR 2018 |
Context Encoding for Semantic Segmentation |
Cross-entropy loss |
Cross-entropy loss |
lossmain +0.2lossauxiliary |
|
CVPR 2018 |
Convolutional Neural Networks with Alternately Updated Clique |
无 |
Cross-entropy loss |
lossmain |
|
CVPR 2018 |
DenseASPP for Semantic Segmentation in Street Scenes |
无
|
Cross-entropy loss
|
lossmain |
|
CVPR 2018 |
Learning a Discriminative Feature Network for Semantic Segmentation |
是/ semantic boundary loss(focal loss) |
Cross-entropy loss |
|
semantic boundary loss的标签是由mask图像二值化提取canny边缘得到的,不是分类损失 |
2018 |
OCNet: Object Context Network for Scene Parsing |
是/ Softmax loss, |
Softmax loss |
lossmain +0.4lossauxiliary |
|
2018 |
Pyramid Attention Network for Semantic Segmentation |
否 |
Softmax loss |
lossmain |
|
ECCV 2018 |
BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation |
是/ Softmax loss, |
Softmax loss |
α |
|
Loss |
公式 |
特点 |
Log loss |
可化为: |
当正样本数量远远小于负样本的数量时,即y=0的数量远大于y=1的数量,loss函数中y=0的成分就会占据主导,使得模型严重偏向背景。 所以对于背景远远大于目标的分割任务,Log loss效果非常不好 |
Dice Loss |
定义两个轮廓区域的相似程度,用A、B表示两个轮廓区域所包含的点集,定义为: loss为: |
Dice Loss其实也可以分为两个部分,一个是前景的loss,一个是物体的loss,但是在实现中,往往只关心物体的loss |
FocaL Loss |
γ |
例如gamma为2,对于正类样本而言,预测结果为0.95肯定是简单样本,所以(1-0.95)的gamma次方就会很小,这时损失函数值就变得更小。而预测概率为0.3的样本其损失相对很大。对于负类样本而言同样,预测0.1的结果应当远比预测0.7的样本损失值要小得多。对于预测概率为0.5时,损失只减少了0.25倍,所以更加关注于这种难以区分的样本。这样减少了简单样本的影响,大量预测概率很小的样本叠加起来后的效应才可能比较有效。
γ |