top_k 和 top_p 是控制AI模型生成文本随机性的两个重要参数:
top_k(Top-K采样)
- 限制模型只从概率最高的前K个词中选择
- 例如top_k=40,模型只会从概率排名前40的词中选择下一个词
- 数值越小,输出越确定性和保守;数值越大,输出越多样化
top_p(Top-P采样/核采样)
- 限制模型从累积概率达到p的词集合中选择
- 例如top_p=0.9,模型会选择累积概率达到90%的最小词集合
- 数值越小,输出越确定性;数值越大,输出越随机
要获得确定性答复,建议设置:
-
最确定性输出:
- top_k = 1(只选概率最高的词)
- top_p = 0.1-0.3(只从概率很高的少数词中选择)
-
较确定但不完全机械化:
- top_k = 10-20
- top_p = 0.3-0.5
-
注意事项:
- 同时设置时,两个参数会共同作用
- 过于确定性可能导致输出重复或不自然