解决idea在debug模式下变得非常慢的问题

本文讲述了作者如何解决IntelliJ IDEA中MethodBreakpoints导致的debug模式运行缓慢问题,通过取消所有方法断点来提升调试效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

其实在之前就有过几次,启动idea的debug模式变得慢的时候,一开始以为只是缓存的问题导致出现了这个问题,但是,在近期,突然遇到debug模式,直接就运行到一定程度项目卡住了,不动了,因此查找了一下原因,列出自己解决该问题的过程

步骤

在启动debug模式的时候,如果你有留意,就会发现debug的窗口会弹出
在这里插入图片描述
Method breakpoints may dramatically slow down debuging
这样的一句话,这个说实话,并不清楚它提示是为什么
但是后面发现这个问题严重困扰到我,就着手去解决它了。
实际上,它就是一个提示你把断点打在方法签名上了
什么意思?如:
在这里插入图片描述
在这里插入图片描述
你有看到断点是一个小方块的,就是这个情况
解决办法也很简单
首先进入到debug窗口
在这里插入图片描述
然后点击两个小圆点图片
在这里插入图片描述
往下滑,找到一个叫Method Breakpoints 的断点出,将勾选全部取消就可以
在这里插入图片描述
在这里插入图片描述
做完这一步就完成了

结语

以上为本人解决该问题的过程

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值