ArrayList、HashMap、LinkedHashMap 解析

本文深入介绍了SQLite数据库的基础知识、特点及如何在Android应用中使用。涵盖了SQLite的数据类型、基本操作、事务处理等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.初级问题

ArrayList

  1. 基本特性

    • 底层实现是什么?(动态数组)

    • 默认初始容量是多少?(10)

    • 扩容机制是怎样的?(增加50%)

  2. 常用方法

    • add()get()的时间复杂度是多少?

    • 为什么随机访问快而中间插入慢?

  3. 线程安全

    • ArrayList是线程安全的吗?如何使其线程安全?

HashMap

  1. 基本概念

    • HashMap的底层数据结构是什么?(数组+链表/红黑树)

    • 默认初始容量和负载因子是多少?(16和0.75)

  2. 哈希冲突

    • 什么是哈希冲突?HashMap如何解决?

  3. 简单使用

    • 如何正确重写作为键的对象的equals()hashCode()方法?

LinkedHashMap

  1. 基本区别

    • 与HashMap的主要区别是什么?(维护插入顺序)

    • 如何实现LRU缓存?

二.中级问题

ArrayList

  1. 底层实现

    • 详细描述扩容过程

    • 为什么建议在构造时指定初始容量?

  2. 性能分析

    • 大量插入删除操作时应选择哪种List实现?

    • 如何实现线程安全的ArrayList?

  3. Fail-Fast机制

    • 什么是快速失败机制?如何触发的?

HashMap

  1. 深入实现

    • JDK8中HashMap有哪些优化?(链表转红黑树)

    • 为什么负载因子默认是0.75?

  2. 哈希算法

    • HashMap如何计算键的哈希值?

    • 为什么长度总是2的幂次方?

  3. 并发问题

    • HashMap在多线程环境下会出现什么问题?

    • ConcurrentHashMap如何解决这些问题?

LinkedHashMap

  1. 实现原理

    • 如何维护插入顺序或访问顺序?

    • accessOrder参数的作用是什么?

  2. 应用场景

    • 哪些场景适合使用LinkedHashMap?

    • 如何基于LinkedHashMap实现固定大小的缓存?

三.高级问题

ArrayList

  1. 系统设计

    • 设计一个支持O(1)随机访问和O(1)头尾插入删除的数据结构

  2. 性能优化

    • 超大容量ArrayList的内存优化策略

    • 如何实现延迟初始化的ArrayList?

  3. JVM层面

    • ArrayList与内存碎片的关系

    • 如何避免ArrayList扩容导致的大对象分配问题?

HashMap

  1. 高级实现

    • 红黑树转换的阈值为什么是8?退化阈值为什么是6?

    • HashMap在多线程环境下的死链问题分析

  2. 哈希攻击

    • 什么是哈希碰撞攻击?如何防范?

    • HashMap如何优化哈希分布?

  3. 替代方案

    • 对比分析HashMap与TreeMap的性能特点

    • 什么情况下应该使用IdentityHashMap?

LinkedHashMap

  1. 扩展设计

    • 如何实现一个线程安全的LinkedHashMap?

    • 设计支持多维度排序的Map结构

  2. 性能调优

    • LinkedHashMap在超高并发下的性能瓶颈

    • 如何优化LinkedHashMap的内存占用?

  3. 算法应用

    • 基于LinkedHashMap实现LFU缓存

    • 如何扩展LinkedHashMap支持范围查询?

实战编码题

  1. ArrayList

    • 实现一个支持快速随机访问和快速头尾操作的循环数组列表

    • 编写线程安全的ArrayList包装器

  2. HashMap

    • 实现一个简化版HashMap,支持基本操作

    • 编写一致性哈希算法的实现

  3. LinkedHashMap

    • 基于LinkedHashMap实现TTL缓存

    • 实现支持LRU和LFU双策略的缓存系统

总结回答技巧

  1. 分层回答:根据面试官级别调整回答深度

  2. 结合源码:适当引用关键源码片段展示理解深度

  3. 实际案例:结合项目经验说明使用场景和问题解决

  4. 性能对比:在不同场景下对比三种数据结构的优劣

  5. 扩展思考:展示对技术演进的了解和未来改进方向的思考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值