Origin将普通散点图升级为清晰的基因分组差异蜂群图

Origin将普通散点图升级为清晰的基因分组差异蜂群图

蜂群图主要用于展示单一变量或多个变量的分布情况。它通过在图表中沿着某个轴上均匀分布数据点,避免它们重叠,以清晰呈现数据的分布密度和趋势。

                             

相比于普通散点图,它拥有以下一些优势:

1)分布展示:

蜂群图适用于展示大量数据点的分布情况,特别是在数据密集的区域,可以更好地揭示数据的聚集和分散趋势。

2)避免重叠:

通过沿轴均匀排列数据点,蜂群图通过智能排列点来有效地解决了散点图中可能出现的重叠问题,提高了数据点的可读性。

3)适用于分组分类数据:

蜂群图通常用于展示分类数据的分布情况,例如对比不同组别或类别之间的数据分布。

4)显示密度,保留精确值:

点的密集程度反映数据的分布密度,通过观察蜂群图中的点的分布情况,可以直观地了解数据的集中趋势、离散度和异常值。

5)美观和易解释:

蜂群图在图形上是简洁而美观的,易于解释。数据点的分布清晰可见,使观察者能够迅速理解数据的特征。

与类似图表的比较

小提琴图:显示分布形状但丢失个体数据点

箱线图:只显示五数概括(最小值、Q1、中位数、Q3、最大值)

散点图:简单但容易重叠

蜂群图主要适用场景

(1)中小规模数据集(通常n<1000);(2)需要同时显示分布形状和个体数据点时;(3)比较多个组的分布情况。

本期教程使用Origin绘制基因分组差异图。

1.打开Origin软件,把数据输入进来;

2.选中所有的数据,点击绘图—统计图—蜂群图;

3.绘制出来的图形如下图所示,接着需要对其进行细节美化;

4.单击数据点,在跳出的浮动工具中,选择减少数据点。

5.双击图形,在组对话框下,符号边缘颜色设置成自己喜欢的颜色;

6.双击坐标轴,在刻度对话框下,对坐标轴的范围进行修改;

7.接着对图形进行其他细节美化,包括修改图例、添加边框、修改字体、修改纵坐标标题等,其最终效果图如下图所示:

以上就是Origin绘制蜂群图的基本步骤,根据以上步骤即可绘制清晰的基因分组差异蜂群图。蜂群图特别适合展示数据分布的同时保留所有数据点信息,是探索性数据分析中的有用工具。大家快去试试吧!

——END——

HAPPY EVERDAY!

### 如何在 Origin 中合并两幅折线到同一表 在 Origin 软件中,可以按照以下方法实现将两幅折线合并至同一个表的操作: #### 数据准备 为了成功完成这一操作,首先需要准备好要绘制的多组数据。这些数据可以通过导入外部文件或者手动输入的方式进入软件环境[^1]。 #### 表创建与初步配置 利用已有的数据集分别生成各自的折线。这一步骤有助于单独调整每张的各项参数,比如线条样式、颜色以及标记点等属性。 #### 合并表的具体步骤 当两张独立的折线都达到满意的效果之后,就可以执行合并操作了: - 打开菜单栏中的 **Graph** 下拉菜单,从中选取 **Merge Graph Windows...** - 在弹出对话框里指定目标窗口作为基础,并添加其他待融合的形对象。 - 设置布局形式为所需的行列结构;对于两个子的情况,默认采用单行双列排列即可满足需求。 需要注意的是,在上述过程中涉及到的比例尺设定环节尤为重要——如果不同源之间存在显著差异,则不宜启用全局一致性的自动缩放功能以免造成视觉失真现象发生。 另外值得注意的一点在于后续维护阶段:一旦修改了个别坐标轴范围或其他关联特性后可能会打破原有的均衡状态,此时则需借助 “Layer Management” 功能重新校准各组成部分之间的相对位置关系以恢复一致性效果。 最后还可以考虑加入额外辅助元素来增强整体表现力,例如通过引入色彩渐变条目等方式进一步提升可读性和美观度水平。 ```python def merge_line_charts(data_list): """ A function to simulate merging multiple line charts into one using Python. Parameters: data_list (list): List of datasets for each individual chart. Returns: None """ import matplotlib.pyplot as plt fig, ax = plt.subplots() colors = ['blue', 'green'] labels = ['Chart 1', 'Chart 2'] for i, data in enumerate(data_list): x_values = range(len(data)) y_values = data ax.plot(x_values, y_values, label=labels[i], color=colors[i]) ax.legend() plt.show() ``` 此代码片段展示了如何使用Python库Matplotlib模拟Origin中的过程,即将多个折线组合成单一像[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值