Graph-Slam(一)

GraphSLAM是一种将离线SLAM问题统一的算法,通过将SLAM后验概率转化为图网络,利用变量消除技术降低问题维度,然后用传统优化方法求解。这种算法能生成包含108个以上特征的地图。内容主要涉及SLAM问题的离线形式,机器人在不同时间的位姿表示,地图的定义以及测量和传感器的功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GraphSLAM is a unifying algorithm for the offline
SLAM problem.It transforms the SLAM posterior into a graphical network,
representing the log-likelihood of the data. It then reduces this
graph using variable elimination techniques, arriving at a lowerdimensional
problems that is then solved using conventional optimization
techniques. As a result, GraphSLAM can generate maps
with 108 or more features.
1 Mapping SLAM Problems into Graphs
1.1 The Offline SLAM Problem
In SLAM, time is usually discrete, and t labels the time index. The robot pose at time t is denoted xt;
we will use x1:t to denote the set of poses from time 1 all the way to time t. The world itself is denoted m, where m is short for map. The map is assumed to be time-invariant, hence we do not use a time index to denote the map. In this paper, we think of the map of a (large) set of features mj.
To acquire an environment map, the robot is able to sense. The measurement at time t is denoted zt. Usually, the robot can sense multiple features at each point in time; hence each individual measurement beam is denoted zti. Commonly, one assumes that zti is a range measurement. The measurement function h describes how such a measurement comes into being:

zti=h(xt,mj,i)+ϵti</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值