GraphSLAM is a unifying algorithm for the offline
SLAM problem.It transforms the SLAM posterior into a graphical network,
representing the log-likelihood of the data. It then reduces this
graph using variable elimination techniques, arriving at a lowerdimensional
problems that is then solved using conventional optimization
techniques. As a result, GraphSLAM can generate maps
with 108 or more features.
1 Mapping SLAM Problems into Graphs
1.1 The Offline SLAM Problem
In SLAM, time is usually discrete, and t labels the time index. The robot pose at time t is denoted xt;
we will use x1:t to denote the set of poses from time 1 all the way to time t. The world itself is denoted m, where m is short for map. The map is assumed to be time-invariant, hence we do not use a time index to denote the map. In this paper, we think of the map of a (large) set of features mj.
To acquire an environment map, the robot is able to sense. The measurement at time t is denoted zt. Usually, the robot can sense multiple features at each point in time; hence each individual measurement beam is denoted zti. Commonly, one assumes that zti is a range measurement. The measurement function h describes how such a measurement comes into being:
Graph-Slam(一)
zti=h(xt,mj,i)+ϵti</