Flink——Flink的基础知识

本文介绍了ApacheFlink的核心目标——基于数据流的有状态计算,区分了无界流和有界流的特点,强调了Flink在低延迟、高吞吐和准确性方面的优势,并对比了与SparkStreaming的区别。此外,文章还讨论了Flink的应用场景、分层API,包括DataStream/DataSetAPI、TableAPI和SQL接口。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、Flink是什么?

Flink核心目标,是“数据流上的有状态计算”(Stateful Computations over Data Streams)。具体说明:Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算

在这里插入图片描述

2、无界流和有界流?

2.1、无界数据流

  • 有定义流的开始,但没有定义流的结束;

  • 它们会无休止的产生数据;

  • 无界流的数据必须持续处理,即数据被摄取后需要立刻处理。

我们不能等到所有数据都到达再处理,因为输入是无限的。

2.2、有界数据流

  • 有定义流的开始,也有定义流的结束;

  • 有界流可以在摄取所有数据后再进行计算;

  • 有界流所有数据可以被排序,所以并不需要有序摄取;

  • 有界流处理通常被称为批处理。

3、有状态流处理

把流处理需要的额外数据保存成一个“状态”,然后针对这条数据进行处理,并且更新状态。这就是所谓的“有状态的流处理”。

在这里插入图片描述

  • 状态在内存中: 优点,速度快;缺点,可靠性差。
  • 状态在分布式系统中: 优点,可靠性高;缺点,速度慢。

4、Flink的特点

我们处理数据的目标是:低延迟、高吞吐、结果的准确性和良好的容错性。

Flink主要特点如下:

  • 高吞吐和低延迟: 每秒处理数百万个事件,毫秒级延迟。
  • 结果的准确性: Flink提供了事件时间(event-time)和处理时间(processing-time)语义。
    对于乱序事件流,事件时间语义仍然能提供一致且准确的结果。
  • 精确一次(exactly-once)的状态一致性保证。
  • 可以连接到最常用的外部系统,如KafkaHiveJDBCHDFSRedis等。
  • 高可用: 本身高可用的设置,加上与K8sYARNMesos的紧密集成,再加上从故障中
    快速恢复和动态扩展任务的能力,Flink能做到以极少的停机时间7×24全天候运行。

5、FlinkSparkStreaming

  • Spark以批处理为根本:

    • Spark 数据模型: Spark采用 RDD 模型,Spark StreamingDStream 实际上也就是一组组小批数据RDD的集合;

    • Spark 运行时架构: Spark是批计算,将DAG 划分为不同的 stage,一个完成后才可以计算下一个。

      在这里插入图片描述

  • Flink以流处理为根本:

    • Flink 数据模型: Flink基本数据模型是数据流,以及事件(Event)序列;

    • Flink 运行时架构: Flink是标准的流执行模式,一个事件在一个节点处理完后可以直接发往下一个节点进行处理。

      在这里插入图片描述

FlinkStreaming
计算模型流计算微批处理
时间语义事件时间、处理时间处理时间
窗口多、灵活少、不灵活(窗口必须是批次的整数倍)
状态没有
流式 SQL 没有

6、应用场景

  • 电商和市场营销: 实时数据报表、广告投放、实时推荐;
  • 物联网(IOT): 传感器实时数据采集和显示、实时报警,交通运输业;
  • 物流配送和服务业: 订单状态实时更新、通知信息推送
  • 银行和金融业: 实时结算和通知推送,实时检测异常行为

7、Flink分层API

  • 越顶层越抽象,表达含义越简明,使用越方便

  • 越底层越具体,表达能力越丰富,使用越灵活

在这里插入图片描述

7.1、有状态流处理

通过底层API(处理函数),对最原始数据加工处理。底层APIDataStreamAPI相集成,可以处理复杂的计算。

7.2、DataStream/DataSet API

DataStream API(流处理)和DataSet API(批处理)封装了底层处理函数,提供了通用的模块,比如转换(transformations,包括mapflatmap等),连接(joins),聚合(aggregations),窗口(windows)操作等。注意:Flink1.12以后,DataStream API已经实现真正的流批一体,所以DataSetAPI已经过时。

7.3、Table API

Table API是以表为中心的声明式编程,其中表可能会动态变化。Table API遵循关系模型:表有二维数据结构,类似于关系数据库中的表;同时API提供可比较的操作,例如selectprojectjoingroup-byaggregate等。我们可以在表与 DataStream/DataSet之间无缝切换,以允许程序将 Table APIDataStream 以及DataSet 混合使用。

7.4、SQL

SQL这一层在语法与表达能力上与Table API类似,但是是以SQL查询表达式的形式表现程序。SQL抽象与Table API交互密切,同时SQL查询可以直接在Table API定义的表上执行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值