运行时验证与自动机学习的无上下文共生
1. 引言
经过几个世纪的发展,人们开发出了越来越复杂的机械工具,这些工具扩展了人类的能力。最近几十年的特点是开发了由计算机控制的系统,这些系统能够执行模仿人类能力的任务,包括决策、视觉和语音。一个具有挑战性的任务是自动化计算机编程和硬件设计过程的一部分。一个新兴的研究领域是软件和硬件合成,在这个领域中,需要将给定的人类友好逻辑形式化规范,例如时序逻辑,转换为代码或易于实现的形式,通常是有限自动机。
我们提出了一种基于自动机学习和模型检查的逆向工程方法,用于从未知结构(状态、转换)的黑盒系统中提取有限状态自动机。该系统已知满足某个属性 ϕ,我们只能通过实验与之接口。我们并不打算(或能够)精确复制它。相反,我们希望通过与黑盒进行实验学习,逆向工程出一个满足 ϕ 的有限自动机模型。所获得的模型可以作为进一步细化所需系统的基础。
2. 安格林的 L∗ 学习算法
安格林的 L∗ 算法通过实验学习有限的黑盒自动机 B。它返回最小的确定性有限自动机(DFA),该自动机产生的语言与 B 相同。算法使用两个有限的序列集:
- S :一个前缀闭集的可访问序列。每个这样的序列都用于将候选学习的自动机从其初始状态转移到一个特定的状态。
- E :一个后缀闭集的区分序列。它们用于区分候选自动机的状态;当从两个不同的状态作为输入应用时,候选自动机对于 E 中的至少一个区分序列给出不同的输出。
集合 S 和 E 都包含空序列 λ。随着算法的进行,向集合 S 和 E 中添加了更多的元素。算法