sklearn之决策树

from sklearn.feature_extraction import DictVectorizer
import csv
from sklearn import preprocessing
from sklearn import tree
from sklearn.externals.six import StringIO
allEctronicsData = open(r'E:\workspace\first\src\test\c.csv', 'rb')
reader = csv.reader(allEctronicsData);
headers = reader.next();
featureList = [];
labelList = [];
for row in reader:
    labelList.append(row[len(row) - 1])
    rowDict = {};
    for i in range(1, len(row)-1):
        rowDict[headers[i]] = row[i];
    
    featureList.append(rowDict);
print(featureList)
vec = DictVectorizer();
dumpyX = vec.fit_transform(featureList).toarray()
print(vec.feature_names_)
lb = preprocessing.LabelBinarizer()
dumpyY = lb.fit_transform(labelList)
print(str(dumpyY))


clf = tree.DecisionTreeClassifier(criterion = 'entropy')
clf = clf.fit(dumpyX, dumpyY)
print(str(clf))
with open("allEctronicsDataAllInfo.dot", 'w') as f:
    f = tree.export_graphviz(clf, feature_names = vec.get_feature_names(), out_file = f)
sklearn是一个Python的机器学习库,里面包含了很多机器学习算法的实现。其中,决策树是一个常用的分类和回归算法,在sklearn中有完整的决策树实现。 使用sklearn决策树案例的步骤如下: 1. 导入必要的库和数据集:首先需要导入sklearn库中的decisiontree模块,以及其他可能需要的库,如numpy和pandas。然后,将准备好的数据集加载到程序中。 2. 数据预处理:对于决策树模型,数据需要进行一定的预处理。这包括对数据进行缺失值处理、特征选择、特征缩放等。可以使用sklearn中的preprocessing模块提供的函数进行处理。 3. 构建决策树模型:使用sklearn中的DecisionTreeClassifier来构建决策树模型。可以设置树的深度、最小叶节点数、最小拆分样本数等参数4. 拟合模型:将准备好的训练数据传入fit函数进行模型拟合。模型会根据传入的数据进行训练,学习到数据的特征和标签之间的关系。 5. 预测和评估:使用训练好的模型对测试数据进行预测,得到预测结果。可以使用sklearn中的predict函数来进行预测。然后,通过与真实标签进行比较,可以使用准确性、精确度、召回率等指标评估模型的性能。 6. 可视化决策树:如果希望可视化决策树,可以使用sklearn中的export_graphviz函数生成Graphviz格式的决策树图形,然后使用Graphviz库进行展示。 总结来说,使用sklearn决策树案例需要导入库和数据集、预处理数据、构建模型、拟合模型、预测和评估模型,最后可以选择性地对决策树进行可视化。通过这个过程,我们可以使用决策树算法来解决分类和回归问题,并对模型性能进行评估和可视化展示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值