自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(71)
  • 资源 (1)
  • 收藏
  • 关注

原创 共振频率与固有频率

术语定义固有频率结构/材料固有的自由振动频率,由质量分布、刚度和边界条件决定(系统本征属性)共振频率外部激励引发系统大幅振动的频率(现象相关参数,与激励特性相关)共振带围绕固有频率的频域区间,在此范围内激励均可引发显著振动响应。

2025-04-07 09:39:32 866

原创 稳态信号(Stationary Signal)和非稳态信号(Non-Stationary Signal)

时域分析:观察信号的时间变化。频域分析:识别信号的频率成分。时频域分析:分析频率成分随时间的变化。解调:提取原始信号。解卷积分析:消除系统失真。这些方法在不同领域中有广泛应用,帮助理解和处理各种信号。

2025-04-07 09:35:13 601

原创 轧机齿轮,轴承,轴故障机理

故障部件频率范围轴承保持架故障频率0.3810.4f0.3810.4f轴旋转频率fff轴承滚动体故障频率z10,只冲击单侧滚道(z > 10,只冲击单侧滚道)z10,只冲击单侧滚道0.18×z×f0.18×z×f轴承滚动体故障频率z10,只冲击单侧滚道(z < 10,只冲击单侧滚道)z10,只冲击单侧滚道0.23×z×f0.23×z×f轴承滚动体故障频率z10,冲击双侧滚道(z > 10,冲击双侧滚道)z10。

2025-01-09 20:56:04 827

原创 滚动轴承寿命发展过程

轴承工作时的噪声强度改变,温度明显升高,超声波、声发射、振动尖峰能量迅速增大,随后逐渐减小,轴承外圈处于损坏之前的故障状态;振动速度总量和振动位移总量明显增大,振动加速度总量减小;频率较低的轴承故障频率尖峰占优势,振动频谱中噪声地平非常高。在这个阶段末,甚至可以检测出工作轴1倍转速频率的振动幅值增大,通常还引起许多转速谐波频率分量的增大。离散的轴承故障频率和自振频率实际开始消失,而被随机宽带高频“噪声地平”取代。

2024-12-25 13:48:36 613

原创 滚动轴承故障冲击信号模型

轴承内圈故障频率调制共振频率是一种低频故障信号调制高频共振频率的振幅调制现象,通过信号处理可以识别故障特征频率,从而进行故障诊断。

2024-12-22 21:16:07 593

原创 有量纲参数在故障诊断中的意义

在时域分析中能较好地反映故障信息的就是概率密度函数,以概率密度函数为基础,衍生出幅值域中的有量纲指标(如均值、均方根值、峭度等)与无量纲指标,有量纲指标普遍对故障特征敏感,但极易受干扰影响,无量纲指标对干扰不敏感,但寻求对故障特征敏感的对应关系仍存在困难。这也是人们转而对频域、时频域分析更感兴趣的原因所在。

2024-12-20 16:57:18 433

原创 棒线材轧机(故障诊断基础)

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考。

2024-12-20 16:55:31

原创 SKF轴承故障频率查询

skf官网

2024-07-06 23:51:20 763 2

原创 svm和决策树基本知识以及模型评价以及模型保存

svm和决策树基本知识以及模型评价以及模型保存。

2024-06-21 23:13:02 1175 1

原创 轴承接触角和受力分析

提示:轴承接触角和受力分析。

2024-06-09 16:59:27 6683

原创 np.hstack()和np.vstack()函数解释

np.hstack()和np.vstack()函数解释。

2024-06-09 16:29:33 428

原创 特征选择概述

特征选择是指从原始特征集中选择一些特征组成新的特征子集,选择特征时需要参照某个标准,根据这个标准去筛选特征,进而降低原始特征集的维度,用经过筛选后的特征集去辨识故障时要求其能达到比原始特征集更精确的识别度,同时能够降低计算复杂度。

2024-05-31 15:12:14 1155

原创 比较不同标准化对具有离群值的数据的影响

加州住房数据集的特征0(街区中的收入中位数)和特征5(平均住房入住率)具有非常不同的尺度,并且包含一些非常大的离群值。这两个特征导致数据难以可视化,更重要的是,它们会降低许多机器学习算法的预测性能。左侧图显示整个数据集(包含特征0和特征5),右侧放大以显示没有边缘离群值的数据集。绝大多数样本都被压缩到一个特定的范围,[0,10]是收入中位数,[0,6]是平均住房入住率。请注意,有一些边缘离群值(一些区块的平均入住率超过1200)。因此,根据应用,特定的预处理可能非常有益。

2024-05-30 15:57:21 843

原创 趋势项和趋势项的导数

趋势向和趋势向的导数。

2024-04-18 11:05:07 346

原创 振动信号幅值成分分析手段

提示:振动信号幅值成分分析手段。

2024-04-18 10:30:40 1614

原创 c++基础学习第五天半(类和对象)

在C++中,类内的成员变量和成员函数分开存储只有非静态成员变量才属于类的对象上2.3.2 、this指针概念通过4.3.1我们知道在C++中成员变量和成员函数是分开存储的每一个非静态成员函数只会诞生一份函数实例,也就是说多个同类型的对象会共用一块代码那么问题是:这一块代码是如何区分那个对象调用自己的呢?c++通过提供特殊的对象指针,this指针,解决上述问题。this指针指向被调用的成员函数所属的对象this指针是隐含每一个非静态成员函数内的一种指针this指针不需要定义,直接使用即可thi

2024-03-31 22:19:25 866

原创 c++基础学习第十天(stl)

算法主要是由头文件。

2024-03-31 10:09:23 815

原创 c++基础学习第九天(stl)

c++基础学习第九天(stl)

2024-03-31 10:08:46 869

原创 c++基础学习第八天(stl)

选取不同的容器操作数据,可以提升代码的效率。

2024-03-31 10:08:12 857

原创 c++基础学习第七天(stl)

学习目标:vector中存放自定义数据类型,并打印输出//自定义数据类型public:mAge = age;//存放对象//创建数据it!= v.end();it++) {//放对象指针//创建数据it!= v.end();test02();return 0;

2024-03-31 10:07:42 689

原创 c++基础学习第六天(多态,文件操作,模板)

c++基础学习第天(多态,文件操作,模板)

2024-03-23 16:44:18 823

原创 c++基础学习第五天(函数提高,类和对象)

作用:函数名可以相同,提高复用性同一个作用域下函故名称相同函数参数类型不同或者个数不同或者顺序不同注意:函放的返回值不可以作为函数重载的条件。

2024-03-23 15:25:22 682

原创 sklearn.model_selection.learning_curve的详细介绍(包含ShuffleSplit()介绍)

提示:sklearn.model_selection.learning_curve的详细介绍。

2024-03-15 20:19:38 1494

原创 c++基础学习第四天(内存分区,引用)

提示:c++基础学习第四天(内存分区,引用)

2024-03-11 23:05:04 956

原创 c++基础学习第三天(指针,结构体,运算符)

指针变量定义语法:*数据类型变量名;//1、定义指针// 指针定义的语法:数据类型 * 指针变量名:int *p;// 让指针记录变量a的地址p = &a1;cout

2024-03-04 19:07:38 1093

原创 c++基础学习第二天(数组,函数)

所谓数组,就是一个集合,里面存放了相同类型的数据元素特点1:数组中的每个放据元素都是相同的数据类型特点2:数组是由连续的内存位置组成的维数组定义的三种方式:1.数据类型数组名[数组长度];//给数组中的元素进行赋值//数组元素的下标是从0开始索引的2.数据类型数组名[数组长度]={值1,值2…};//如果在初始化数据时候,没有全部填写完,会用0来填补剩余数据3.数据类型数组名[]={值1,值2…};

2024-03-03 16:34:24 970

原创 c++基础学习第一天

c++基础学习第一天。

2024-03-03 11:17:18 849

原创 sklearn.preprocessing.RobustScaler(解释和原理,分位数,四分位差)

1,由于中位数的选取和分位点的选取规则不一样,可能导致不同的结果,尤其在处理的数据较少时,可能影响较大。2,根据Q1,Q3的计算公式可得,有时候计算的为分数,所以在这个时候Q1和Q3的取法可能有很大的不同。3,当数据量足够,数据较密集时,可以看到和计算公式就很吻合。

2024-02-27 17:16:23 1113

原创 StratifiedGroupKFold解释和代码实现

StratifiedGroupKFold解释和代码实现。

2024-01-03 23:11:31 1632

原创 Group k-fold解释和代码实现

Group k-fold:不考虑标签(class)和组(group)的影响。有时候测试集包含某一类的全部标签,而训练集不包含该类的样本。也就是说没经过训练,就要测试(KFold 第1折叠)。适用于每一组的数据类型都很全的时候。

2024-01-01 22:35:23 1547

原创 StratifiedKFold解释和代码实现

StratifiedKFold:考虑了标签(class),但没考虑组(group)的影响。

2024-01-01 21:49:22 2672

原创 KFold解释和代码实现

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考KFold:不考虑标签(class)和组(group)的影响。有时候测试集包含某一类的全部标签,而训练集不包含该类的样本。也就是说没经过训练,就要测试(KFold 第1折叠)。适用于数据比较平衡,数据来自同一组(同一个机器,不同故障)的时候。记住要打乱数据。

2024-01-01 11:01:11 2423

原创 交叉验证的种类和原理(sklearn.model_selection import *)

前提:假设某些数据是独立且相同分布的 (i.i.d.),假设所有样本都源于同一个生成过程,并且假设生成过程没有对过去生成的样本的记忆。注意:虽然i.i.d.数据是机器学习理论中的常见假设,但在实践中很少成立。如果知道样本是使用瞬态过程生成的,则使用时间序列感知交叉验证方案会更安全(例一)。同样,如果我们知道生成过程具有组结构(从不同受试者、实验、测量设备收集的样本),则使用分组交叉验证会更安全(例二)。

2023-12-29 17:27:38 1665

原创 机器学习或深度学习的数据读取工作(大数据处理)

机器学习或深度学习的数据读取工作(大数据处理)主要是.split和re.findall和glob.glob运用。读取文件的路径(为了获得文件内容)和提取文件路径中感兴趣的东西(标签)1,“glob.glob”用于读取文件路径2,“.split“用于字符串分割3,”re.findall“用于获取字符串里的感兴趣的东西。

2023-12-24 23:55:44 1849 3

原创 凯斯西储大学轴承数据解读

Normal Baseline Data里面的数据的采样频率是12k。每个.mat文件下,都包含在该故障下,或驱动端或风扇端或基座采集到的数据。数据集官网。

2023-12-20 22:02:00 5576 3

原创 振动位移、振动速度、振动加速度分析

振动位移:理解成路程,单位是mm,一般用于低转速机械的振动评定;振动速度:理解成速度,单位是mm/s,一般用于中速转动机械的振动评定;振动加速度:理解成运动加速度,单位mm/s²,一般用于高速转动机械的振动评定。振动位移、速度和加速度的定义如下【1】。振动物体 (或质点) 每秒钟振动的次数称为振动频率。对简谐振动而言,振动物理量加速度、速度和位移三者与振动频率存在如下关系。

2023-12-17 09:53:53 30416

原创 scipy.signal.hilbert和scipy.fftpack.hilbert的区别

提示:分析scipy.signal.hilbert和scipy.fftpack.hilbert在应用的区别。

2023-12-15 21:26:04 629

原创 希尔伯特黄变换(hht)

希尔伯特黄变换简单介绍

2023-12-15 20:58:00 3218 2

原创 希尔伯特变换

希尔伯特变换

2023-12-15 15:30:50 1242

原创 windows下载dlib

windows下载dlib

2022-10-18 23:50:29 574

微机复习(进制).pdf

进制的种类,进制间的转换,补码等。

2021-01-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除