提示:特征选择
1, 什么是特征选择
特征选择是指从原始特征集中选择一些特征组成新的特征子集,选择特征时需要参照某个标准,根据这个标准去筛选特征,进而降低原始特征集的维度,用经过筛选后的特征集去辨识故障时要求其能达到比原始特征集更精确的识别度,同时能够降低计算复杂度。
2,特征选择的过程
- 第一步先随机产生一个特征子集,
- 第二步采用某个标准对这个子集进行评估,如果评估结果和设定的停止准则是一致的,那么就将这个特征子集导出形成最优特征子集,则就返回重复前面的步骤,直到得到满足条件的最优特征子集。
- 最后,验证所选的特征子集是否能够达到前述对其的要求。
从图中可以清晰地看出特征选择方法包含 4 个基本步骤(产生子集、子集评价、停止准则、结果验证)。目前特征选择方法的研究重点是如何产生较优的子集以及用什么样的准则去评价故障特征子集。
2.1,特征子集的产生过程
- 全局搜索
从理论上讲全局搜索可以对每个特征进行评价,在进行搜索前需要设定一个评价准则,根据这个准则去评价原始转子故障特征集里的每一个特征,将满足条件的特征筛选出来形成最后的特征子集。但是这种搜索算法会带来巨大的计算量,尤其当原始特征集规模较大时,计算时间较长。- 广度优先搜索
- 分支限界搜索
- 定向搜索
- 最优优先搜索
- 启发式搜索
启发式方法相对于全局搜索则相对简单的多,它不是对所有的特征都进行评价,而是根据某种顺序不时地往当前的特征子集里增加或删除特征,从而得到敏感特征集。这类特征选择方法主要有:序列前向选择方法,浮动搜索法,广义序列后向选择方法等。这类方法计算速度较快,但是它的缺点是牺牲了整体最优,容易导致局部极值点。- 序列前向选择
- 序列后向选择
- 双向搜索
- 增L去R选择算法
- 序列浮动选择
- 决策树
- 随机搜索
由随机产生的某个候选特征子集开始,依据一定的规则和信息向全局最优解渐渐靠近。与上述两种方法相比较,这种方法的不足之处是高度的不确定性。常用的随机搜索方法包括粒子群算法 Particl Swarm Optimization PSO 免疫算法 Immune Algorithm IA)等。