mxnet训练arcface加速实验

本文介绍了在Ubuntu 16.04上使用CUDA 10.1和CuDNN 7.6.5进行深度学习训练时遇到的问题及解决方案。通过调整环境变量、尝试使用memonger工具以及改变训练数据的存储位置,成功提升了训练速度。此外,发现设置`default.kvstore='local'`和启用数据乱序加载能显著提高处理样本的速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本地训练服务器:Ubuntu16.04、cuda10.1、cudnn7.6.5、1080Ti x 8

主要是从 https://github.com/deepinsight/insightface/issues/125 找的线索。。。

  • 环境变量配置(显存):

        参考https://blog.csdn.net/u010402786/article/details/78475472

  • 使用memonger:

        参考 https://github.com/dmlc/mxnet-memonger,但将其加入到代码中,报错,未解决。

  • 奇怪现象-GPU使用率大部分时间0%,很短时占用率80%:

 

  • 修改default.kvstore=’local’ # device

        70 samples/sec

  • 将训练数据rec拷贝到服务器本地

        速度提升到600 samples/sec

         

  • 训练开始速度快,后来变慢

 

  • config.is_shuffled_rec = True # False

        速度提升到870 samples/sec

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值