
AB实验笔记
文章平均质量分 92
AB实验笔记
羚风雯
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
第6章 AB实验的SRM问题
SRM(样本比例不匹配)问题是AB实验中实验组与对照组实际参与单元数量与理论设计比例出现偏差的现象,会严重影响实验可信度。主要原因包括:部署阶段的随机化缺陷(如残留效应、触发前状态偏差)、执行阶段的策略下发问题(如下发时机差异)、数据处理阶段的过滤偏差等。检测方法采用假设检验计算比例偏差的P值,当P值<0.001时判定存在SRM问题。定位问题需验证随机化点上游一致性、检查变量分配、分析细分市场等。由于SRM问题普遍存在且危害严重,文档强调应将SRM测试作为每次实验的标准流程,以保障实验内部有效性和业务原创 2025-08-13 14:45:25 · 1027 阅读 · 0 评论 -
第5章 AB实验的随机分流
本章系统阐述了AB实验随机分流的关键技术。单层分流模式通过散列函数实现用户随机分组,但面临流量限制问题;正交分层模式利用层间正交性原理实现流量复用,通过数学推导证明层间独立性;散列算法选择需兼顾性能与均匀性,其中Murmur算法表现优异。文档强调,构建可靠分流系统需结合分层架构、算法优化和统计监控,这些方法在Google等公司的实践中得到验证,是支撑大规模实验平台的核心技术。原创 2025-08-12 15:26:32 · 1199 阅读 · 0 评论 -
第20章 AB实验之外的因果分析方法
核心目标:在X存在内生性 () 时,估计X对Y的因果效应α。工具要求:找到一个变量Z,它必须相关于X),且必须外生于模型 (),即Z只能通过X影响Y。实施方法 (2SLS):用Z回归X,分离出X的外生部分X'。用X'代替X回归Y,得到一致的因果效应估计α。本质:利用工具变量Z提供的“准随机”变动(因为Z与ε无关),将其对X的影响 (X') 作为“代理”去估计X对Y的因果效应,从而绕过了内生性的干扰。理解关键在于把握工具变量必须同时满足的两个硬性条件(相关性和外生性)原创 2025-07-23 15:40:03 · 846 阅读 · 0 评论 -
第18章 基于AB实验的增长实践解决方案
指标本身是长期累积型(如留存率、GMV),而非瞬时指标(如点击率)。”4个核心问题,运用多种统计方法和评估策略(OEC、维度拆解、保护指标、长期坚持组),进行严谨、全面、面向业务价值的实验效果评估。图18-3 应展示了减少AA波动的具体方法(核心是优化实验设计和数据质量,如确保用户随机分流均匀、排除异常值、增加样本量等)。解决前17章(技术、原理)之外的组织、流程、实践难题,提供通用性方案。多角色(产品、研发、数据、分析、运营等)在实验流程中如何高效协作?,观察效果是否衰减、逆转或持续?原创 2025-07-21 17:01:04 · 857 阅读 · 0 评论 -
第12章 开展AB实验的基础条件
无法提供可信、量化的评估结果。即使是简单的界面设计决策(如颜色、字体)也难以达成共识。三方面的协同推进,缺一不可。企业应根据自身发展阶段和资源状况,选择适合的实施路径。:实验周期从2周缩短至3天,日均实验数从5个提升至50+。核心业务(如搜索、推荐、营销)必须通过AB实验验证后再全量。“无显著效果”或“负向效果”不再被视为团队失误,决策层必须愿意投入资源建设这些基础设施。AB实验在企业中的成功实施首先取决于。避免将"完成计划百分比"等。:AB实验需要可靠的。AB实验的成功实施需要。原创 2025-07-14 10:15:11 · 824 阅读 · 0 评论 -
第10章 产品指标体系
摘要:本文系统阐述了产品指标体系的构建方法与演进逻辑。首先解析了指标体系的核心构成(指标、维度、业务逻辑)与类型划分(过程型/结果型指标)。重点介绍了OKR分级法(北极星指标、业务驱动指标、守护指标)和OSM模型(目标-策略-度量)两大设计方法论,并辅以滴滴、Facebook等案例说明指标体系的动态调整过程。同时强调了指标评估的三大原则:信息增益、因果关系验证和长期有效性监控。最后指出指标体系需要随着业务阶段、环境变化和认知升级持续进化,才能成为驱动业务增长的"动态数据罗盘"。原创 2025-07-11 11:38:04 · 915 阅读 · 0 评论 -
第16章 基于AB实验的增长实践——验证想法:AB实验实践
AB实验分为五大环节:假设→设计→运行→分析→决策。实验假设需明确目标性(如"提升次日留存5%")、可归因(单一变量)和可复用性;设计环节需关注样本选择(静态/动态抽样)、指标分层(结果/过程/保护指标)和流量计算(最小样本量);运行阶段要进行功能验证与数据监控;分析时需明确影响范围、确保组间可比性;最终决策需综合核心指标、成本收益和负面影响。关键要避免幸存者偏差、辛普森悖论,平衡统计显著性与业务价值。原创 2025-07-19 00:11:28 · 1296 阅读 · 0 评论 -
第09章 AB实验的长期影响
本文系统探讨了AB实验中短期效果与长期影响不一致的现象及评估方法。重点介绍了六类评估方法:1)长周期实验直接观察时间效应;2)保留/反转实验通过控制组对比;3)后期分析法观测策略撤除后的持续影响;4)时间交错实验分离适应效应与真实效果;5)固定群组分析解决样本偏差问题;6)代理指标法建立短期长期关联模型。文章强调需根据业务特性选择方法组合,既要避免"指标游戏",又要平衡决策效率与评估精度。最后提出"因果链验证+历史模式沉淀"的评估框架,为数据驱动决策提供系统性方法论。原创 2025-07-08 23:06:56 · 664 阅读 · 0 评论 -
第01章 AB实验的基本原理和应用
AB实验是数据驱动产品迭代的核心工具,通过随机分流用户、并行对比策略效果实现科学决策。文章系统阐述了AB实验的定义、类型和3个核心要素(实验单元、控制参数、指标),并重点分析了其两大价值:建立因果推论(破解相关≠因果)和量化增长收益(微小改进带来复利效应)。文章还介绍了AB实验的先验性(小流量验证)和并行性(多实验层同时运行)特点,列举了Google、亚马逊等企业的经典应用案例,指出AB实验已成为将经验猜测转化为数据实证的关键工具。原创 2025-07-27 22:41:53 · 868 阅读 · 0 评论 -
第07章 AA 实验
AA实验是验证AB实验系统可靠性的关键工具,通过实验组与对照组采用完全相同策略,检测系统是否存在偏差。其核心价值包括:1)控制假阳性,验证P值分布合理性;2)确保用户分组同质性;3)对齐实验与业务监控数据;4)估计指标自然波动,为AB实验设计提供基线。执行方法分系统级(模拟千次AA实验)和实验级(前置校准),推荐结合日志回溯法(快速验证)与流量寻优法(实时检测)。常见失败根源包括分流不均、方差计算错误、样本不足及数据污染。AA实验是数据驱动决策的“守门人”,忽视它可能导致不不可靠的实验结论。原创 2025-07-06 16:37:21 · 1432 阅读 · 0 评论 -
第17章 基于AB实验的增长实践——沉淀想法:实验记忆
实验沉淀不仅是经验存档,更是未来决策的参考依据,需覆盖实验全流程信息(设计、数据、结论等),并通过组织化的管理实现价值最大化。:包括实验基础信息(时间、发起人)、设计方案(假设、流量分配)、数据结果(指标、对照组)、分析结论(成功/失败原因、后续优化方向)。广告实验中发现的用户对广告形式(动态视频)、行业类型(金融/游戏)的敏感度差异。量化实验文化:统计实验成功率(如谷歌仅10%-20%)、实验上线比例、故障与未实验改动的关联性。:建立实验墙、看板、素材库,便于团队查阅历史案例。(如UI设计、广告策略)。原创 2025-07-21 11:58:29 · 397 阅读 · 0 评论 -
第13章 AB实验平台的建设
AB实验平台的交互过程:实验平台三阶段闭环:核心功能集:平台性能评估标准:●稳:架构稳定、服务稳定、实验质量稳定。●准:分流、指标、数据、分析准确。●易:便于进行各种实验管理、工具交互,实验容易创建、观测、评估和得出结论。●快:实验接入快,实验数据计算快,实验结果评估快。●多:能快速支持多种场景、多种类型的多个实验。附加要素:需支持实验沉淀(历史策略可回溯)、灰度放量(5%→100%渐进发布)、敏感数据脱敏(如GDPR合规审计)。AB实验流程:从实验创建开始,经过流量分配确保用户原创 2025-07-16 18:35:36 · 1211 阅读 · 0 评论 -
第08章 AB实验的灵敏度
摘要:本文探讨AB实验灵敏度提升的核心技术,揭示大厂如何检测微小业务增长。通过指标优化(数据转换、用户过滤)、实验对象聚焦(触发分析)和分组优化(CUPED、分层抽样)三大维度降低方差,提升系统检测能力。验证显示,优化后一类错误率降至3.8%,0.5%增益的召回率提升67%,实验周期缩短50%。文章特别强调触发分析的潜在陷阱,并指出在业务"微雕"阶段,灵敏度直接决定产品迭代速度。最后提出实验收益公式,说明方差缩减技术可帮助企业在更少用户、更短周期内验证微增益策略。原创 2025-07-07 23:11:16 · 988 阅读 · 0 评论 -
第04章 AB实验参与单元
能隔离则隔离 → 地理/网络隔离最干净(如测试城市打车政策)不能隔离则监控 → 资源类干扰用隔离+报警(如预算分割)互动必测量平台分角色 → 生产/消费端必须双边测试(如抖音/B站)原创 2025-08-05 12:09:58 · 885 阅读 · 0 评论 -
第11章 AB实验评估指标体系
典型案例:电商转化率指标误用实验A:优化商品详情页加载速度(影响分母)实验B:改进加购按钮设计(影响分子)错误结论:实验组加购转化率↑15%,直接全量上线实际原因:详情页UV下降20%(页面加载失败导致),真实加购量其实下降8%正确做法:拆解监控# 正确指标设计def 评估实验():加购量 = 获取加购行为数()详情页UV = 获取曝光UV()if 实验组 == 'A组': # 页面加载实验核心指标 = 详情页UVelse: # 按钮设计实验核心指标 = 加购量。原创 2025-07-13 22:18:29 · 1092 阅读 · 0 评论 -
第14章 AB实验组织和文化建设
当企业步入实验成熟阶段,建立成为必然。这不仅需要全员掌握,更需将数据驱动的决策思维深植组织DNA,形成“”的良性闭环。原创 2025-07-14 12:51:07 · 766 阅读 · 0 评论 -
第03章 AB实验的统计学知识
AB实验的统计学原理是科学决策的基石。精度与成本平衡:样本容量、边际误差需业务权衡。假设检验严谨性:P 值、功效缺一不可,避免早期偷窥。实战贴士:清洗异常值、控制多重测试、优先非参数方法。——刘玉凤《AB实验:科学归因于增长的利器》原创 2025-08-01 11:57:15 · 780 阅读 · 0 评论 -
第02章 AB实验的关键问题
AB实验的理论陷阱与实践挑战本文揭示了AB实验从理论到实践中的系统性风险。通过电商、社交App等案例,剖析了四大关键问题:伪随机分组、SUTVA假设违反、样本不足等实验参与对象陷阱;颗粒度错配、流量复用失控等随机分流错误;指标体系缺失和OEC失效等指标设计雷区;以及统计误读、分析流程漏洞等评估问题。文章指出,虽然AB实验原理简单,但落地时存在诸多隐蔽风险,需要建立标准化的全流程防控机制。最后提出"反脆弱"设计原则,强调实验失败率超过15%往往反映系统性偏差,需要从统计方法、组织协作到数据基建进行全面优化。原创 2025-07-29 22:42:09 · 1112 阅读 · 0 评论 -
第21章 常用的用户调查分析方法
人们会无意识地保持回答的前后一致:若先声明“关注环保”,后续不愿为环保付费会显得虚伪 → 被迫选择“愿意”。某工具类APP实验“智能排版”功能,日志显示使用率仅5%,但问卷中实验组满意度显著更高。评测员将“嘻嘻”统一标注为“表情包需求”,但实际用户可能是搜索“嘻嘻村”(地名)。:日志发现“支付失败率上升” → 结合客服工单数据发现“某银行接口故障”。:隐藏运费至支付前最后一步,并增加“全网比价”功能,支付转化率提升22%。某游戏问卷显示90%玩家“每日在线>2小时”,但日志数据实际仅30%。原创 2025-07-24 15:06:18 · 1195 阅读 · 0 评论 -
第19章 AB实验的局限性
第六部分重点讨论AB实验的适用场景和局限性,以及用户理解的补充手段,包括观察性因果分析方法和常见的用户研究手段。虽然AB实验很强大,但也不是万能的。AB实验、观察性因果分析、用户调查是3种典型的用户研究分析方法。在选择分析方法时,有一个简单的判断原则,对于需要进行因果判断,特别是需要量化的场景,能进行AB实验的尽量通过AB实验来判断产品是否符合预期;对于不适合AB实验的场景,可以采用其他的观察性因果分析方法;用户调查方法可以辅助判断行为和指标之间的移动是否符合逻辑;原创 2025-07-21 17:22:17 · 921 阅读 · 0 评论 -
第15章 基于AB实验的增长实践——构建想法:形成产品假设
。原创 2025-07-18 10:48:23 · 1020 阅读 · 0 评论