
数据分析核心问题
文章平均质量分 70
数据分析核心问题
羚风雯
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
第6问 数据分析领域主要的岗位有哪些?
数据分析岗位分为业务和技术两大方向。业务方向包括数据分析师、商业分析师、数据运营和数据产品经理,侧重业务理解和策略制定;技术方向涵盖数据开发、数据挖掘和算法工程师,专注于数据处理和模型开发。职业发展建议从业务分析师起步,根据兴趣选择细分方向:业务侧需强化沟通能力,技术侧要深耕算法。基础技能如SQL、Python和统计学是通用要求,选择方向需结合个人兴趣和能力特长。原创 2025-08-16 21:41:55 · 810 阅读 · 0 评论 -
第4问 常见的指标有哪些?
指标选择原则:根据业务目标筛选关键指标(如互联网关注增长,金融关注风控)。注意指标定义的行业差异(如“活跃用户”在不同产品中的定义可能不同)。通用分析思路:拆解业务逻辑:如零售行业从“人货场”维度拆解。对比与趋势:同比/环比分析、行业基准对比。实践建议:结合小册子中的具体定义,避免指标歧义。优先关注直接影响业务决策的核心指标(如电商的GMV、金融的不良率)。原创 2025-08-16 21:37:59 · 505 阅读 · 0 评论 -
第5问 对于数据分析领域,统计学要学到什么程度?
(EDA阶段):数据清洗、特征工程的基础(如均值/分布/可视化)。抽样分布理论、参数估计、假设检验、方差分析、回归分析、时间序列分析等。:先建立知识地图(如统计学的核心模块和应用场景),再深入细节。:面试需理解原理(如中心极限定理的推导、假设检验的数学逻辑)。没有复杂的公式,内容讲得通透。生动诙谐的案例,通俗易懂,图文并茂,学习统计学不会那么枯燥。:非算法岗无需深究数理证明(如马尔可夫链收敛性)。:工作中遇到新需求(如生存分析)再针对性补足。:AB测试、回归预测等业务场景的核心工具。原创 2025-08-16 21:21:37 · 477 阅读 · 0 评论 -
第3问 什么是数据指标?
数据指标是通过量化建模反映业务现状的分析工具,由维度、汇总方式和量度三要素构成。数据是原始记录,指标是经过加工的业务度量模型。落地应用时需确保数据质量、结合业务场景解读,并通过动态对比发现异常。不同业务阶段应关注不同指标,如导入期关注新注册人数,成熟期关注付费率。使用中需避免数据陷阱,保持对业务本质的洞察,将数据作为辅助决策的工具而非唯一依据。原创 2025-08-16 10:52:32 · 325 阅读 · 0 评论 -
第2问 数据分析是怎么来的?
:数据分析的发展是。原创 2025-08-08 17:35:36 · 504 阅读 · 0 评论 -
第1问 数据分析怎么学?
:浏览目录→明确学习目标→选择章节精读→输出笔记→结合业务问题实践。原创 2025-08-08 17:34:55 · 238 阅读 · 0 评论