神经网络模型loss不收敛、不下降问题汇总

本文分析了神经网络模型在训练过程中可能出现的loss不收敛或不下降的问题,包括学习率过大导致的跑飞、样本量不足、过拟合和数据问题。针对这些问题,提出了减小学习率、调整模型复杂度、应用正则化等解决方案,并给出了具体的实例和解决办法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、模型不收敛

主要有以下几个原因:

1.learning rate设大了会带来跑飞(loss突然一直很大)的问题
这个是新手最常见的情况——为啥网络跑着跑着看着要收敛了结果突然飞了呢?可能性最大的原因是你用了relu作为激活函数的同时使用了softmax或者带有exp的函数做分类层的loss函数。当某一次训练传到最后一层的时候,某一节点激活过度(比如100),那么exp(100)=Inf,发生溢出,bp后所有的weight会变成NAN,然后从此之后weight就会一直保持NAN,于是loss就飞起来辣。我的depth estimation相关项目的loss曲线,如下:

可以看出跑飞了,(幸lr设的并不是非常大所以又拉了回来)。如果lr设的过大会出现跑飞再也回不来的情况。这时候你停一下随便挑一个层的weights看一看,很有可能都是NAN了。对于这种情况建议用二分法尝试。0.1~0.0001.不同模型不同任务最优的lr都不一样。

 

2.数据库太小一般不会带来不收敛的问题

### 卷积神经网络中的反向传播过程 在卷积神经网络(Convolutional Neural Networks, CNNs)中,反向传播算法用于计算损失函数相对于各个权重的梯度,从而实现模型参数的有效更新。这一过程中涉及的关键操作包括前向传播、误差计算以及通过链式法则进行梯度传递。 #### 前向传播阶段 输入图像被表示成矩阵形式[^2],经过一系列线性和非线性变换层——即卷积层(Convolution Layer),激活函数(Activation Function),池化层(Pooling Layer)等处理后得到最终预测输出。每一层都会对其接收的数据执行特定类型的转换,并将结果传递给下一层直到最后一层产生分类得分或其他期望的结果。 #### 计算误差项 当完成一次完整的正向遍历之后,会依据实际标签与预测之间差异来衡量当前模型性能的好坏;常用的方法有交叉熵损失(Cross Entropy Loss) 或均方根误差(Mean Squared Error)[^1]。此步骤产生的总成本/损失值反映了整个网络对于训练样本集表现出来的平均错误程度。 #### 反向传播与权值调整 为了最小化上述定义好的目标函数,在每次迭代结束时都需要利用BP (Back Propagation) 技术沿相反方向逐级回溯各节点贡献了多少于整体失误之中: - **局部敏感分析**:针对每一个参与运算单元分别求导数以量化其对全局影响; - **应用链式法则**:根据微积分原理连接起同层次间相互依赖关系形成连续变化路径; - **累积效应评估**:汇总来自下游模块反馈回来的信息作为上游部分改进依据; - **更新策略实施**:采用诸如随机梯度下降(SGD), Adam优化器等方式按照既定学习率逐步修正原始设定参数直至收敛稳定状态为止[^4]。 ```python import torch.nn as nn from torch.autograd import Variable class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() # Define layers here def forward(self, x): out = ... # Forward pass through defined architecture def train(model, criterion, optimizer, input_data, target_labels): model.train() inputs = Variable(input_data) labels = Variable(target_labels) outputs = model(inputs) loss = criterion(outputs, labels) optimizer.zero_grad() # Clear gradients from previous iteration loss.backward() # Backward propagation: compute gradient w.r.t parameters optimizer.step() # Update weights using computed gradients ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiangyong58

喝杯茶还能肝到天亮,共同进步

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值