(一)可以借鉴
1.在Figure 4中,展示了作者利用神经网络倒数第二层输出的向量,把相似的向量代表的图像找出来,结果发现:向量相似-语义空间的表示->表面feature表示很好
2.关于绘图:这种feature结构图的绘制好像到现在的论文也一直在用,不过这里的Alex作者是用的两片GPU所以分成了两半-我们一般不会这么画。总的来说,feature的HW越来越小,厚度C越来越大,每一个channel其实更多的是代表提取的语义,所以后面提取的语义越来越多。
3.关于输入的图像,imageNet有不同的分辨率,所以作者Alex的做法是,统一的把Image 全部Resize为256x256的RGB输入进去
(二)启发点
1.读论文和读博客不一样,读论文中获取的信息很多,特别是里面的文字包含作者的观点,可以逐渐形成自己的观点