李沐读论文-启发点的记录:第一篇-AlexNet

(一)可以借鉴

1.在Figure 4中,展示了作者利用神经网络倒数第二层输出的向量,把相似的向量代表的图像找出来,结果发现:向量相似-语义空间的表示->表面feature表示很好

2.关于绘图:这种feature结构图的绘制好像到现在的论文也一直在用,不过这里的Alex作者是用的两片GPU所以分成了两半-我们一般不会这么画。总的来说,feature的HW越来越小,厚度C越来越大,每一个channel其实更多的是代表提取的语义,所以后面提取的语义越来越多。

3.关于输入的图像,imageNet有不同的分辨率,所以作者Alex的做法是,统一的把Image 全部Resize为256x256的RGB输入进去

(二)启发点

1.读论文和读博客不一样,读论文中获取的信息很多,特别是里面的文字包含作者的观点,可以逐渐形成自己的观点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值