运行YOLOv5带图解小白入门 --【环境配置篇】

本文以YOLOv5-v7.0版本为例,介绍了YOLO代码工程的使用。包括从Gitcode下载代码工程,用Pycharm打开;在终端输入命令创建并配置所需环境;修改配置文件及代码,如设置数据集路径、类别数量和训练参数;最后进行训练,还提示了训练可能遇到的问题及解决参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

心平气和按照流程操作,万不可急于求成。

目录

1. 下载YOLO代码工程

2. 配置所需环境

3. 修改相应配置文件及代码

4. 训练


1. 下载YOLO代码工程

        我先声明,因为yolov5一直在不断更新,我们以YOLOv5-v7.0版本展开。

        Gitcode下载链接:文件 · v7.0 · mirrors / ultralytics / yolov5 · GitCode(因为经过加速了)。

        点击进入后,跟着图片步骤操作即可。

         本地解压后用Pycharm打开,我不建议小白用shell命令操作,跟着我的步骤可以对各个环节了解的更直观一些。

         在终端输入下边命令回车 (作用是创建一个环境)

conda create -n 自定义环境名 python==3.8
例如:
conda create -n qwe python==3.8

         等它运行完就完成了环境的创建。

2. 配置所需环境

        紧接以上步骤 继续在终端输入指令(下载代码运行所需要的依赖库)。

1.首先我们进入刚才创建的环境 
conda activate 环境名字
如果不知道的话输入(可以看见所有环境),然后可以看见你创建的环境名字,按照上一行命令执行
conda env list 

2.下载所需依赖
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

        运行完毕即可完成环境的配置。(注:这里是CPU版本,并未用上cuda,如果有英伟达GPU的同学,单独更换torch、torchvision版本即可,只想入门学习的话可以忽略)

3. 修改相应配置文件及代码

        1. 设置数据集路径和类别信息,图片和标签文件不会放的话参考我上一篇文章。

        很多同学对路径怎么写很迷糊,如果是按照我上篇文章的操作。

        我举个例子,我的数据集在E:/Dataset下,然后Dataset文件夹中分别有train、val俩个文件夹,这个时候我们只需在path 后边填写为E:/Dataset ,train后边填train,val后边填val即可。

         2.修改类别数量

         3.修改训练参数

                可以看到参数有很多,我这里只修改一些必要参数,你们后边可以自己研究。

                 如果是在自己的电脑上运行,找到这行,将其改为0

                 到这里这一步就已经修改完成。

4. 训练

        下面我们可以开始进行训练了.

还是像之前一样 终端输入
python train.py

        第一次运行、如果是笔记本的话运行会很慢,耐心等待即可,如有报错,请参考我主页有很多文章是讲解关于解决YOLO运行报错的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值