mapTR环境配置和代码复现

本文档详细介绍了MapTR的环境配置步骤,包括创建虚拟环境、安装torch、mmdetection3d及相关依赖,并提供了数据准备和训练预测的流程。在配置过程中遇到的错误如No space left on device、AttributeError、ModuleNotFoundError、TypeError和RuntimeError及其解决方案也一并给出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MAPTR: STRUCTURED MODELING AND LEARNING FOR ONLINE VECTORIZED HD MAP CONSTRUCTION

论文 :https://arxiv.org/pdf/2208.14437.pdf

代码:https://github.com/hustvl/MapTR

MapTR,是一个结构化的端到端框架,用于高效的在线矢量化高精地图构建。我们提出了一种基于统一排列的建模方法,即将地图元素建模为具有一组等效排列的点集,避免了地图元素的歧义,便于学习。我们采用分层查询嵌入来编码地图结构化信息。

MapTR 在 nuScenes 数据集上实现了最佳性能和效率。MapTR-nano 以实时推理速度运行(25.1FPS)在 RTX 3090 上,同时达到更高的mAP。

定性结果表明,MapTR 在复杂多样的驾驶场景中稳定的完成地图构建。MapTR在自动 驾驶方面具有很大的应用价值。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1. 环境配置

1.1 创建虚拟环境

conda create -n maptr python=3.8

1.2 激活虚拟环境

conda activate maptr

1.3 下载torch

pip install torch1.10.0+cu113 torchvision0.11.0+cu113 torchaudio==0.10.0

pip install torch1.10.0+cu113 torchvision0.11.0+cu113 torchaudio==0.10.0 --no-cache-dir

pip install mmcv-full1.4.0 mmdet2.14.0 mmsegmentation0.14.1 timm</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值