研讨问题记录(三)

本文围绕四篇论文汇报展开,包括《DropGNN:随机Dropouts增强图神经网络的表达能力》《加速动态社区环境下移动边缘计算中联邦学习的收敛》等。指出各论文汇报存在的问题,如对增强表达能力原理解释不足、缺乏理论收敛证明、汇报平淡重点不突出等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

希望在我汇报那天能够遇到一个温柔的老师,呜呜呜

《DropGNN:随机Dropouts增强图神经网络的表达能力》

参考文献:DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
问题:

  1. 你认为这篇文章有什么不足?(这个问题也太狠了叭)
  2. 可以增强表达能力,为什么通过这个方法可以增强表达能力?能够解释清楚后面这个问题更重要
  3. drop node 的选择,如何选?
  4. readout 函数的确定

《加速动态社区环境下移动边缘计算中联邦学习的收敛》

参考文献:Accelerating Convergence of Federated Learning in MEC with Dynamic Community
问题:

  1. 只是从实验层面进行了证明,理论层面的收敛证明如何看?
  2. 不仅仅分块讲论文,要能够把论文串起来。
  3. 封面,要把文章信息列出来(标题,作者,发表时间,发表于哪里等)
  4. 别人的文章的话,要说该文,而不是说我们
  5. 该实验场景是否能支撑论文的证明内容?
  6. 在联邦学习当中,什么可以称之为收敛。
  7. 为什么要介绍某一种模型,要介绍的内容和文章有什么联系?
  8. 最好不要念备注
  9. 汇报平淡,重点不突出
  10. 鼠标没有跟着演示
  11. 动态社区是什么,在实验中是如何体现出来的

《 用transformer求解积分和微分方程》

参考文献:Deep Learning for Symbolic Mathematics
问题:

  1. 对文章微观理解后,要能够跳出来进行宏观方面的分析
  2. 介绍文章的想法和出发点是什么?
  3. 该领域最新的文章是什么情况?

《基于鲁棒计数草图的数据平面入侵检测技术》

参考文献:A Robust Counting Sketch for Data Plane Intrusion Detection
问题:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值