AI大模型探索之路-应用篇8:Langchain框架LangServe模块-专注于AI模型的部署

目录

前言

一、概述

二、功能特性

三、REST API 开发

四、Postman调用测试

五、Client调用测试

总结


前言

随着AI大语言模型(LLM)的技术的不断演进,AI应用的开发和部署变得越来越复杂。在这样的背景下,LangServe应运而生——一个旨在简化AI服务部署和运维的框架。专为大模语言模型(LLM)的部署和管理而设计;本篇旨在讲解LangServe的功能特点和实践运用。


一、概述

LangServe 则提供了一整套将LLM部署成产品服务的解决方案。它可以将 LLM应用链接入到常见的Python的 Web框架(比如:FastAPI、Pydantic、uvloop、asyncio),进而生成一套RESTful API; 减少了开发人员运维部署的任务,可以更专注于LLM应用开发;不仅简化了从开发到生产的过渡,还确保了服务的高性能和安全性;提供了包括模型管理器、请求处理器、推理引擎、结果缓存、监控与日志记录以及API网关各类组件;降低了技术门槛

### LlamaIndex 和 LangChain 的发展前景及优势 #### 发展背景与发展现状 近年来,随着自然语言处理技术的进步以及大模型应用普及,面向开发者的工具链也逐渐丰富起来。LlamaIndex 和 LangChain 是两个专注于提升开发者生产力并促进应用快速构建的框架。 #### 技术特点对比 ##### LlamaIndex LlamaIndex 提供了一套完整的解决方案来简化大型预训练模型的服务化部署过程[^1]。其核心功能包括但不限于: - **模块化的架构设计**:允许用户根据需求灵活组合不同组件; - **内置优化机制**:针对特定硬件环境进行了性能调优; - **易于集成第三方服务**:支持与其他云平台无缝对接; 通过这些特性,LlamaIndex 能够帮助企业和个人更高效地利用先进的AI能力开展业务创新活动。 ##### LangChain 相比之下,LangChain 更加注重于创建一个开放式的生态系统,在此基础上鼓励社区贡献者共同推动项目向前发展。主要表现在以下几个方面: - **丰富的插件库**:提供了大量现成可用的功能扩展包; - **跨平台兼容性好**:可以轻松移植到多种操作系统上运行; - **活跃的技术交流圈子**:拥有众多爱好者组成的在线论坛和技术文档资源; 这种模式不仅促进了知识共享和技术进步,也为广大使用者带来了更多样化的选择空间。 #### 前景展望 对于未来发展趋势而言,两者都将持续受益于整个行业对于智能化水平不断提高的需求增长。然而具体到各自的成长路径,则会因为定位差异而有所不同。 LlamaIndex 可能会在企业级市场占据一席之地,特别是在那些追求高性能计算能力和定制化服务能力的企业客户群体当中获得青睐。与此同时,凭借强大的技术支持团队和完善的产品线布局,有望进一步巩固自身竞争优势。 另一方面,LangChain 凭借着广泛的社区基础和高度可塑性的产品形态,预计将在开源软件领域内发挥重要作用。长远来看,这有助于吸引更多外部力量参与到项目的迭代更新过程中去,从而形成良性循环的局面。 ```python # 示例代码用于展示如何简单初始化这两个库(假设存在这样的API) from llama_index import LlamaModel llama_model = LlamaModel() from langchain import ChainBuilder lang_chain = ChainBuilder() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值