【GitHub开源AI精选】ZeroSearch:阿里巴巴开源的大模型搜索引擎框架,无需真实搜索引擎交互

系列篇章💥

No.文章
1【GitHub开源AI精选】LLM 驱动的影视解说工具:Narrato AI 一站式高效创作实践
2【GitHub开源AI精选】德国比勒费尔德大学TryOffDiff——高保真服装重建的虚拟试穿技术新突破
3【GitHub开源AI精选】哈工大(深圳)& 清华力作 FilmAgent:剧本自动生成 + 镜头智能规划,开启 AI 电影制作新时代
4【GitHub开源AI精选】Lumina - Image 2.0 文生图模型,以小参数量实现高分辨率多图生成新突破
5【GitHub开源AI精选】探索 Mobile-Agent:X-PLUG 推出的创新型移动智能操作代理
6【GitHub开源AI精选】吴恩达团队开源VisionAgent:用自然语言开启计算机视觉新时代
7【GitHub开源AI精选】Oumi:一站式AI开发平台,涵盖训练、评估与部署全流程
8【GitHub开源AI精选】深入剖析RealtimeSTT:开源实时语音转文本库的强大功能与应用
9【GitHub开源AI精选】PodAgent:多智能体协作播客生成框架,自动化打造高质量播客,赋能内容创作与品牌传播
10【GitHub开源AI精选】OpenManus开源AI工具:3小时复刻Manus,39.5k星
11【GitHub开源AI精选】OpenGlass:大模型赋能的开源方案,25美元打造智能眼镜,支持语音控制+AR叠加
12【GitHub开源AI精选】AppAgentX:西湖大学发布可自主进化的手机智能体,实现GUI操作的高效与智能
13【GitHub开源AI精选】Agent-S架构揭秘:低代码+多模态融合的智能体新范式
14【GitHub开源AI精选】Open-Interface:大模型驱动的计算机“自动驾驶”系统|自然语言操控的自动化工具
15【GitHub开源AI精选】2025年AI工程师必备!AgentOps五大功能重构智能体开发流程
16【GitHub开源AI精选】LangManus:社区驱动的多智能体AI自动化框架,开启复杂任务处理新纪元
17【GitHub开源AI精选】autoMate:AI 驱动的本地自动化助手,用自然语言解锁高效办公,让电脑任务自己动起来
18【GitHub开源AI精选】Sitcom-Crafter:北航联合港中文等高校打造的剧情驱动3D动作生成系统
19【GitHub开源AI精选】Local Deep Researcher:本地化部署的AI研究助手,零门槛开启智能研究
20【GitHub开源AI精选】Browser Use:开源AI自动化工具,让AI像人类一样操控网页
21【GitHub开源AI精选】LLaVA-Med:微软打造的生物医学领域多模态AI助手,助力医疗智能化
22【GitHub开源AI精选】RF-DETR:Roboflow 的实时目标检测模型『边缘设备鹰眼』,低至160FPS的工业级检测利器
23【GitHub开源AI精选】MegaTTS 3:字节跳动开源语音利器,吊打VALL-E,自然度逼近真人录音
24【GitHub开源AI精选】LocAgent:斯坦福联合耶鲁大学等机构推出的代码问题定位智能体
25【GitHub开源AI精选】WhisperX:70倍实时语音转录!革命性词级时间戳与多说话人分离技术
26【GitHub开源AI精选】Crawl4AI:LLM专属极速开源爬虫利器、1秒处理百万级数据
27【GitHub开源AI精选】Oliva:开源语音RAG助手,一句话秒搜海量数据,多AI协作颠覆传统搜索
28【GitHub开源AI精选】UFO²:微软开源的 Windows 桌面 Agent 操作系统,开启智能自动化新时代
29【GitHub开源AI精选】ebook2audiobook:AI驱动的电子书转有声书利器,支持1107种语言+语音克隆
30【GitHub开源AI精选】WebThinker:赋能大型推理模型的自主科研新范式
31【GitHub开源AI精选】ZeroSearch:阿里巴巴开源的大模型搜索引擎框架,无需真实搜索引擎交互


前言

在当今数字化时代,大型语言模型(LLMs)在自然语言处理领域取得了显著进展,但在实际应用中仍面临生成幻觉内容或信息过时等问题。为解决这一问题,检索增强生成(RAG)技术应运而生,通过整合外部知识提升模型的生成能力。然而,传统的检索增强方法依赖于与真实搜索引擎的交互,这不仅成本高昂,还存在文档质量不可控的问题。阿里巴巴通义实验室开源的 ZeroSearch 项目,提出了一种创新的解决方案,通过模拟搜索引擎的方式激励大模型的搜索能力,无需与真实搜索引擎交互,大幅降低了训练成本,同时提升了模型的推理能力。
在这里插入图片描述

一、项目概述

ZeroSearch 是阿里巴巴通义实验室开源的一种创新的大模型搜索引擎框架。它基于强化学习激励大模型的搜索能力,无需与真实搜索引擎交互,通过轻量级监督微调和课程学习机制,将大模型转化为检索模块,能够根据查询生成相关或噪声文档,并动态控制生成质量。该框架在多个问答数据集上的性能超过谷歌搜索,同时大幅降低了训练成本(超过80%),具有很强的扩展性和通用性。

二、主要功能

(一)无需真实搜索引擎交互

ZeroSearch 模拟搜索引擎的方式,避免了与真实搜索引擎(如谷歌)的交互,从而降低了成本和不可控性。通过这种方式,模型可以在本地环境中完成搜索任务,无需依赖外部API。

(二)动态控制文档质量

ZeroSearch 支持生成相关或噪声文档,能够通过调整提示中的关键词灵活控制生成文档的质量。这种机制为训练提供了多样化的检索场景,有助于提升模型的鲁棒性。

(三)大幅降低成本

相比使用真实搜索引擎进行强化学习训练,ZeroSearch 的训练成本大幅降低(超过80%)。这一特性使得大规模训练更加可行,尤其适合资源有限的研究者和开发者。

(四)支持多种模型和算法

ZeroSearch 兼容不同参数规模的大模型(如3B、7B、14B),并支持多种强化学习算法(如PPO、GRPO)。这种灵活性使得框架能够适应不同的应用场景和需求。

在这里插入图片描述

三、技术原理

(一)模拟搜索引擎
ZeroSearch 基于大模型自身的知识转化为模拟搜索引擎,根据查询生成相关或噪声文档,从而替代真实搜索引擎。通过这种方式,模型可以在本地环境中完成搜索任务,无需依赖外部API。

(二)轻量级监督微调
ZeroSearch 通过少量标注数据对大模型进行微调,使其能够生成高质量或低质量的文档,以适应不同的训练需求。这种微调机制不仅提升了模型的检索能力,还降低了训练成本。

(三)课程学习机制
在训练过程中,ZeroSearch 逐步增加文档的噪声水平,让模型从简单场景开始,逐步适应更具挑战性的任务。通过这种课程学习机制,模型的推理能力得到了显著提升。

(四)基于 F1 分数的奖励机制
ZeroSearch 使用 F1 分数作为奖励信号,专注于答案的准确性。这种机制确保了模型生成的答案与真实答案尽可能匹配,从而提升了模型的整体性能。

(五)多轮交互模板
ZeroSearch 设计了明确的推理、搜索和回答阶段,通过结构化的标签(如 <think><search><answer>)引导模型逐步完成任务。这种多轮交互模板不仅提高了模型的透明度,还增强了其可靠性。

四、应用场景

(一)智能问答系统
ZeroSearch 可以快速准确地回答用户问题,适用于智能客服和智能助手等场景。通过模拟搜索引擎,模型能够提供更准确、更可靠的答案。

(二)内容创作
ZeroSearch 能够帮助创作者获取信息,生成初稿或提供灵感,适用于新闻、文案和学术写作等领域。通过动态控制文档质量,模型可以为创作者提供多样化的信息支持。

(三)教育与学习
ZeroSearch 可以为学生提供即时解答,支持在线教育和智能辅导。通过模拟搜索引擎,模型能够提供更准确、更可靠的知识支持。

(四)企业知识管理
ZeroSearch 能够帮助员工快速检索公司内部资源,提高工作效率。通过动态控制文档质量,模型可以为企业提供多样化的知识管理支持。

(五)研究与开发
ZeroSearch 能够为研究人员提供最新研究成果,加速研究进程。通过模拟搜索引擎,模型能够提供更准确、更可靠的研究支持。

五、快速使用

(一)安装依赖

首先,确保您的系统中安装了必要的依赖项。以下是安装步骤:

conda create -n zerosearch python=3.9  # 创建一个新的 Conda 环境
conda activate zerosearch  # 激活环境
pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu121  # 安装 PyTorch
pip install vllm==0.6.3  # 安装 vllm
pip install wandb  # 安装 Weights & Biases,用于实验跟踪
pip install serpapi  # 安装 SerpAPI,用于与真实搜索引擎交互(可选)

(二)下载训练数据集

接下来,下载 ZeroSearch 的训练数据集。这些数据集用于训练和微调模型:

huggingface-cli download --repo-type dataset --resume-download sunhaonlp/ZeroSearch_dataset --local-dir ZeroSearch_dataset

此命令会从 Hugging Face 数据集仓库中下载 ZeroSearch 数据集,并保存到本地的 ZeroSearch_dataset 文件夹中。

(三)下载模拟 LLM

ZeroSearch 使用预训练的模拟 LLM 来生成文档。您可以根据需要选择不同参数规模的模型:

huggingface-cli download --resume-download sunhaonlp/SearchSimulation_3B --local-dir SearchSimulation_3B
huggingface-cli download --resume-download sunhaonlp/SearchSimulation_7B --local-dir SearchSimulation_7B
huggingface-cli download --resume-download sunhaonlp/SearchSimulation_14B --local-dir SearchSimulation_14B

这些命令会从 Hugging Face 模型仓库中下载不同参数规模的模拟 LLM,并保存到本地的 SearchSimulation_3BSearchSimulation_7BSearchSimulation_14B 文件夹中。

(四)启动本地模拟服务器

启动本地模拟服务器,以便在训练过程中使用模拟 LLM:

python -m sglang.launch_server --model-path SearchSimulation_3B --host 0.0.0.0 --tp 2 --dp 2 --port 6001

此命令会启动一个本地服务器,监听端口 6001,并使用 SearchSimulation_3B 模型作为模拟搜索引擎。您可以根据需要更改模型路径和端口。

(五)进行强化学习训练

最后,使用 ZeroSearch 提供的脚本进行强化学习训练。以下是使用 GRPO 算法的示例:

bash train_grpo.sh NUM_GPUS_PER_NODE 4 MODEL_PATH Llama-3.2-3B DATA_PATH ZeroSearch_dataset TOTAL_STEPS 203 IP localhost SEARCH_MODE simulate_sft SIMULATION_LLM SearchSimulation_3B START_THRESHOLD 0.25 END_THRESHOLD 0.5

此脚本会启动训练过程,使用 4 个 GPU,Llama-3.2-3B 作为策略模型,ZeroSearch_dataset 作为训练数据集,总共训练 203 步。SEARCH_MODE 设置为 simulate_sft,表示使用轻量级监督微调的模拟搜索引擎,SIMULATION_LLM 设置为 SearchSimulation_3B,表示使用 3B 参数规模的模拟 LLM。START_THRESHOLDEND_THRESHOLD 分别设置为 0.25 和 0.5,用于控制课程学习机制的难度。

六、结语

ZeroSearch 作为阿里巴巴通义实验室开源的创新大模型搜索引擎框架,通过模拟搜索引擎的方式激励大模型的搜索能力,无需与真实搜索引擎交互,大幅降低了训练成本,同时提升了模型的推理能力。它在多个问答数据集上的性能超过谷歌搜索,具有很强的扩展性和通用性。ZeroSearch 的开源为自然语言处理领域带来了新的可能性,为研究者和开发者提供了一个高效、灵活的工具。

七、相关资源

  • 项目官网:https://alibaba-nlp.github.io/ZeroSearch/
  • GitHub 仓库:https://github.com/Alibaba-nlp/ZeroSearch
  • HuggingFace 模型库:https://huggingface.co/collections/sunhaonlp/zerosearch
  • 技术论文:https://arxiv.org/pdf/2505.04588

在这里插入图片描述

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索(CSDN博客之星|AIGC领域优质创作者)
📖专属社群:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,回复‘入群’ 即刻上车,获取邀请链接。
💘领取三大专属福利:1️⃣免费赠送AI+编程📚500本,2️⃣AI技术教程副业资料1套,3️⃣DeepSeek资料教程1套🔥(限前500人)
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我们,一起携手同行AI的探索之旅,开启智能时代的大门!