贝尔曼方程人形机器人举例

贝尔曼方程人形机器人举例

贝尔曼方程(Bellman Equation)是强化学习中的核心方程,用于表示状态值函数和动作值函数之间的关系。通过贝尔曼方程,可以递归地计算状态或状态-动作对的价值。为了更好地理解贝尔曼方程在强化学习中的应用,下面我们以人形机器人行走任务为例进行讲解。

贝尔曼方程

贝尔曼方程有两种形式:状态值函数形式和动作值函数形式。

1、状态值函数 V(s):

在这里插入图片描述
其中,r𝑡是时间步 t 的即时奖励,γ 是折扣因子,st+1是下一时间步的状态。

2、动作值函数 Q(s,a):

在这里插入图片描述
其中,at是时间步 t 的动作,max𝑎′表示在所有可能的动作中选择最优的动作。

人形机器人行走任务中的贝尔曼方程应用

  • 在控制人形机器人行走的任务中,我们需要通过强化学习算法(如PPO)来优化机器人的行走策略。贝尔曼方程在这个过程中起着重要的作用,用于评估和改进策略。
  • 贝尔曼方程在强化学习中用于递归地计算状态或状态-动作
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值