贝尔曼方程人形机器人举例
贝尔曼方程(Bellman Equation)是强化学习中的核心方程,用于表示状态值函数和动作值函数之间的关系。通过贝尔曼方程,可以递归地计算状态或状态-动作对的价值。为了更好地理解贝尔曼方程在强化学习中的应用,下面我们以人形机器人行走任务为例进行讲解。
贝尔曼方程
贝尔曼方程有两种形式:状态值函数形式和动作值函数形式。
1、状态值函数 V(s):
其中,r𝑡是时间步 t 的即时奖励,γ 是折扣因子,st+1是下一时间步的状态。
2、动作值函数 Q(s,a):
其中,at是时间步 t 的动作,max𝑎′表示在所有可能的动作中选择最优的动作。
人形机器人行走任务中的贝尔曼方程应用
- 在控制人形机器人行走的任务中,我们需要通过强化学习算法(如PPO)来优化机器人的行走策略。贝尔曼方程在这个过程中起着重要的作用,用于评估和改进策略。
- 贝尔曼方程在强化学习中用于递归地计算状态或状态-动作