在上一篇中,我们探讨了“上下文腐烂”(Context Rot)这一现象,揭示了大模型在面对超长上下文时表现不稳、性能退化的现实挑战。
然而,问题还不止于此。 即使在一个单独的上下文中,模型也并不会平均对待每一部分信息。 这就引出了另一个令人意想不到的问题:“中间迷失”(Lost in the Middle) —— 模型对上下文中间部分的信息,往往视而不见。
本篇,我们将继续深入上下文工程的核心难题,看看模型“看不见重点”的本质究竟是什么。
上下文工程存在的意义
“中间迷失”现象(Lost in the Middle)
尽管“上下文腐烂”已经揭示了:上下文越长,模型整体性能可能越差,但还有一个更加反直觉的问题——
即使在同一个上下文中,不同位置的信息并不是“地位平等”的。
这就是所谓的 “中间迷失”(Lost-in-the-Middle)问题: 相比上下文的开头和结尾,模型更容易忽略处于中间位置的信息,导致这些关键信息在推理或生成过程中被“遗忘”或“跳过”。
这个问题进一步强调了:在构建上下文时,不只是“塞进来”那么简单,信息的摆放顺序与结构组织方式,同样至关重要。
这条“U 型曲线”揭示了一个关键事实:大语言模型对上下文中的不同位置,并不会平均关注。
上下文的开头信息更容易被记住(表现出“首因效应”),结尾部分也更容易被模型捕捉(体现“近因效应”),而中间的信息则往往被淹没在上下文的“噪音”中,容易被忽视。
这种偏差对于像 RAG(检索增强生成)这样的应用影响尤为明显 —— 如果关键信息刚好被放在中间位置,模型可能就“看不见”,从而导致回答不准确或完全跑偏。
这进一步说明了上下文工程的重要性:不是把信息塞进去就好,而是要放在“模型真的会看”的地方。
💡 一个简单的规则:放在开头或结尾
针对“中间迷失”问题,有一个非常实用的经验法则: 把最关键的信息,放在上下文的最前面或最后面。
无论是主要指令,还是最相关的检索文档,都建议优先安排在开头或结尾位置。 仅仅是这样一个简单的排序策略,就能显著提升模型识别和利用关键信息的能力。
长上下文的技术瓶颈
许多与长上下文相关的问题,其根源都可以追溯到 Transformer 架构中的自注意力机制(Self-Attention)。
这个机制,让模型能够判断句子中不同词之间的重要性关系,确实是语言理解的关键所在。但代价也很高: 它的计算复杂度会随着上下文长度呈O(n²)增长。
简单来说: 如果你把上下文长度翻倍,模型所需的计算量就会变成原来的四倍。
这不仅带来了显著的资源消耗,也直接限制了模型在实际场景中高效处理超长上下文的能力。 这正是为什么,扩展上下文长度虽然看起来强大,背后却隐藏着严重的性能瓶颈。
这个 O(n²) 的复杂度问题,使得处理超长序列在实际中变得既缓慢又昂贵。
虽然现在已经有一些近似算法,能够让模型“支持”百万级 token 的上下文窗口,但这些技术手段本质上是性能与精度的折中。 它们虽然扩展了长度,却也可能降低了模型的准确性,进一步加剧了我们前面提到的性能退化问题。
除此之外,上下文越“拥挤”,成本越高、延迟越大,模型混淆的风险也越高。 换句话说,把更多内容塞进上下文,不一定能提升效果,反而可能拖慢系统、误导模型,得不偿失。
替代架构探索:迈向亚二次复杂度的道路
意识到自注意力机制在计算复杂度上的根本限制后,研究者们开始探索一系列替代性架构,希望实现亚二次(Subquadratic)甚至线性级别(Linear)的扩展能力。比如:
-
Mamba 架构基于状态空间模型(State Space Model),通过用“选择性状态空间”替代传统注意力机制,从而实现线性计算复杂度;
-
Linformer 则通过低秩投影(Low-rank Projections)将注意力机制简化为线性复杂度;
-
Longformer 和 BigBird 等架构则采用稀疏注意力(Sparse Attention)模式,通过只关注部分 token 来降低整体计算开销。
这些新架构在理论上都非常诱人——既减少了资源消耗,又拓宽了上下文处理能力。
然而,在实际效果上,这些架构在多数基准测试中仍无法与传统 Transformer 相比肩。
例如:Mamba 虽擅长处理超长序列,但在复杂推理或上下文学习类任务中表现不佳;而稀疏注意力机制虽然节省了计算量,却常常错过一些重要的长距离依赖信息,而这正是完整注意力机制擅长捕捉的内容。
也正因如此,目前主流的大模型服务商并未全面转向新架构,而是持续投入资源,优化传统 Transformer 架构的效率与稳定性。
挑战依然存在: 我们是否能在保持注意力机制强大表示能力的同时,也实现像 Mamba 或 Longformer 那样的高效率? 这正是上下文工程、模型架构设计、以及未来 AI 性能突破的关键课题。
RoPE:突破训练极限的实用路径
相比于彻底更换模型架构,还有一种更务实的方案:在保留 Transformer 框架的基础上,扩展其上下文处理能力。
为了解决传统自注意力机制在上下文长度上的限制,研究者提出了一种重要技术——旋转位置编码(RoPE,Rotary Position Embedding)。
RoPE 的核心优势在于: 它通过一种可扩展的数学方式来编码位置信息,使得模型可以处理远超训练时长度的上下文,而无需重新训练模型本身。
这种方式不仅保持了原有 Transformer 的表达能力,还大大提升了在长上下文任务中的灵活性与适用性。 可以说,RoPE 是目前在“性能”和“实用性”之间取得平衡的代表性技术之一。
(🔍 接下来将展示一张 RoPE 的放大示意图)
RoPE 的核心原理在于:它通过 不同频率的三角函数(正弦和余弦) 来表示 token 的位置信息。
举个例子: 即使模型原本只在 4,096 个 token 的上下文长度上训练过,RoPE 也可以通过数学方法将位置编码“外推”,从而支持更长的序列,比如 32k、100k,甚至百万级的 token 长度。
正因如此,许多现代大语言模型才能在不重新训练的情况下,支持超长上下文窗口,大大扩展了使用范围。
但这项技术的突破也带来了一个重要的权衡: 👉 虽然 RoPE 可以“看得更远”,但“看得不准”的问题也随之而来。
随着上下文长度变长,模型对远距离 token 的注意力质量会逐渐下降。 这是因为模型在训练时从未见过如此远的位置组合,那些被外推出来的位置编码在实际语义上变得越来越“不靠谱”,导致长距离依赖捕捉能力减弱。
换句话说,RoPE 给了我们更大的视野,但它并不总能让模型看得清楚。 要想真正让模型理解百万级上下文,仅靠位置编码的延展还远远不够,这也正是“上下文工程”需要进一步解决的难点之一。
从上下文腐烂到中间迷失,再到位置编码的物理极限,我们已经看到了: 大语言模型虽强,但“读懂上下文”远比想象中更复杂。
靠堆长文本、拼凑指令、硬塞数据——不仅不能让模型变聪明,反而可能让它更“迷糊”。
要真正释放大模型的智能,我们需要的不只是更大的上下文窗口,而是更科学、更系统、更工程化的上下文设计方式。
这,正是 Context Engineering(上下文工程)作为一门新兴学科即将登场的原因。 下一篇,我们将正式进入它的核心:如何把上下文“写成系统”,而不是一股脑的塞给模型。
如何学习AI大模型 ?
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
(👆👆👆安全链接,放心点击)
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
(👆👆👆安全链接,放心点击)