1. 线性模型
线性回归是深度学习中最基础的一个模型,可以看作单层神经网络。
下面以一个例子来解释线性回归:
- 假设要开发一个模型,根据房屋的面积(平方英尺)和房龄(年)来预测房屋价格(美元)。
- 需要收集一个数据集来训练模型,该数据集包括了房屋的销售价格、面积和房龄。
- 预测的目标(比如预测房屋价格)称为标签(label),预测所依据的自变量(面积和房龄)称为特征(feature)。
线性模型基于的一个假设是:目标(房屋价格)可以表示为特征(面积和房龄)的加权和。计算式子如下:
- w为权重,决定了每个特征对我们预测值的影响。
- b称为偏置,决定了当所有特征都取值为0时,预测值应该为多少。
上面的模型本质上是通过加权和对输入特征进行一个线性变换,并通过偏置项进行一个平移。
模型训练的目标:给定一个数据集,寻找出模型的权重w和偏置b, 使得根据模型做出的预测大体符合数据里的真实价格。
机器学习领域,通常采用向量来表示多个特征,当我们的输入包含d个特征时,我们将预测结果(通常使用“尖角”符号表示的估计值)表示为性线回归是对n维输入的加权,外加偏差。
将所有的特征放入x向量,所有的权重放入w向量,则可以使用点积来简洁的表达模型:
向量x是单