动手学深度学习——线性回归

1. 线性模型

线性回归是深度学习中最基础的一个模型,可以看作单层神经网络。

下面以一个例子来解释线性回归:

  1. 假设要开发一个模型,根据房屋的面积(平方英尺)和房龄(年)来预测房屋价格(美元)。
  2. 需要收集一个数据集来训练模型,该数据集包括了房屋的销售价格、面积和房龄。
  3. 预测的目标(比如预测房屋价格)称为标签(label),预测所依据的自变量(面积和房龄)称为特征(feature)。

线性模型基于的一个假设是:目标(房屋价格)可以表示为特征(面积和房龄)的加权和。计算式子如下:

在这里插入图片描述

  • w为权重,决定了每个特征对我们预测值的影响。
  • b称为偏置,决定了当所有特征都取值为0时,预测值应该为多少。

上面的模型本质上是通过加权和对输入特征进行一个线性变换,并通过偏置项进行一个平移。

模型训练的目标:给定一个数据集,寻找出模型的权重w和偏置b, 使得根据模型做出的预测大体符合数据里的真实价格。

机器学习领域,通常采用向量来表示多个特征,当我们的输入包含d个特征时,我们将预测结果(通常使用“尖角”符号表示的估计值)表示为性线回归是对n维输入的加权,外加偏差。
在这里插入图片描述
将所有的特征放入x向量,所有的权重放入w向量,则可以使用点积来简洁的表达模型:
在这里插入图片描述
向量x是单

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉下心来学鲁班

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值