第十次ccf 分蛋糕

题目:

试题编号: 201703-1
试题名称: 分蛋糕
时间限制: 1.0s
内存限制: 256.0MB
问题描述:
问题描述
  小明今天生日,他有n块蛋糕要分给朋友们吃,这n块蛋糕(编号为1到n)的重量分别为a1, a2, …, an。小明想分给每个朋友至少重量为k的蛋糕。小明的朋友们已经排好队准备领蛋糕,对于每个朋友,小明总是先将自己手中编号最小的蛋糕分给他,当这个朋友所分得蛋糕的重量不到k时,再继续将剩下的蛋糕中编号最小的给他,直到小明的蛋糕分完或者这个朋友分到的蛋糕的总重量大于等于k。
  请问当小明的蛋糕分完时,总共有多少个朋友分到了蛋糕。
输入格式
  输入的第一行包含了两个整数n, k,意义如上所述。
  第二行包含n个正整数,依次表示a1, a2, …, an
输出格式
  输出一个整数,表示有多少个朋友分到了蛋糕。
样例输入
6 9
2 6 5 6 3 5
样例输出
3
样例说明
  第一个朋友分到了前3块蛋糕,第二个朋友分到了第4、5块蛋糕,第三个朋友分到了最后一块蛋糕。
评测用例规模与约定
  对于所有评测用例,1 ≤ n ≤ 1000,1 ≤ k ≤ 10000,1 ≤ ai ≤ 1000。


代码:

#include<bits/stdc++.h>
using namespace std;

int main(){
	int n,k;
	int a[1010];
	while(cin>>n>>k){
		for(int i=0;i<n;++i){
			cin>>a[i];
		}
		int t=0,num=1;
		for(int i=0;i<n;++i){
			t+=a[i];
			if(t>=k&&i<n-1) num++,t=0;
		}
		cout<<num<<endl;
	}
	return 0;
}






### 关于第34次CCF CSP认证第三题的解答 目前提供的引用资料中并未直接提及第34次CCF CSP认证的具体第三题内容及其详细解答。然而,可以通过析已有的参考资料以及常见的CSP认证题目特点来进行推测。 #### 已知信息总结 - **引用[1]** 提供了关于第3次CCF CSP认证的相关真题解析[^1]。 - **引用[2]** 讨论了第十三次CCF CSP认证中的某道题目(棋局评估),并提到了一些实现细节和错误原因[^2]。 - **引用[3]** 给出了第34次CCF CSP认证的第一题“矩阵重塑”的满解决方案,并指出该题较为基础[^3]。 尽管上述引用未涉及具体第三题的内容,但通常情况下,CCF CSP认证的第三题会更注重算法设计能力、数据结构应用能力和复杂度优化技巧。以下是基于常见模式的一个可能方向: --- ### 可能的方向与解决方法 假设第34次CCF CSP认证的第三题是一个典型的动态规划或图论问题,则可以从以下几个方面入手解决问题: #### 动态规划类问题 如果题目属于动态规划范畴,一般需要定义状态转移方程。例如: ```python def solve_dp(n, m, data): dp = [[float('inf')] * (m + 1) for _ in range(n + 1)] dp[0][0] = 0 for i in range(1, n + 1): for j in range(m + 1): if j >= data[i - 1]: dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - data[i - 1]] + 1) else: dp[i][j] = dp[i - 1][j] return dp[n][m] n, m = map(int, input().split()) data = list(map(int, input().split())) print(solve_dp(n, m, data)) ``` 此代码片段展示了一个简单的背包问题求解过程,适用于部动态规划场景。 #### 图论类问题 如果是图论相关问题,可能会涉及到最短路径计算或者连通性判断等问题。以下是一段Dijkstra算法的模板代码: ```python import heapq def dijkstra(graph, start): dist = {node: float('inf') for node in graph} dist[start] = 0 heap = [(0, start)] while heap: current_dist, u = heapq.heappop(heap) if current_dist > dist[u]: continue for v, weight in graph[u].items(): distance = current_dist + weight if distance < dist[v]: dist[v] = distance heapq.heappush(heap, (distance, v)) return dist graph = { 'A': {'B': 1, 'C': 4}, 'B': {'A': 1, 'C': 2, 'D': 5}, 'C': {'A': 4, 'B': 2, 'D': 1}, 'D': {'B': 5, 'C': 1} } start_node = 'A' result = dijkstra(graph, start_node) print(result) ``` 这段代码实现了单源最短路径算法——Dijkstra算法,适合处理加权无向图上的距离计算问题。 --- 由于当前缺乏具体的题目描述,以上仅为通用框架示例。实际解答需依据官方发布的正式试题为准。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值