使用Python gdal库读取tif格式遥感图像并将其切割为多个小图之后转png

最近实验室有个遥感项目,需要先将tif格式大图切割为小图

# -*- coding: utf-8 -*-
import os
import numpy
from osgeo import gdal

class GRID:
    #读图像文件
    def read_img(self,filename):
        dataset=gdal.Open(filename)       #打开文件

        im_width = dataset.RasterXSize    #栅格矩阵的列数
        im_height = dataset.RasterYSize   #栅格矩阵的行数

        im_geotrans = dataset.GetGeoTransform()  #仿射矩阵
        im_proj = dataset.GetProjection() #地图投影信息
        im_data = dataset.ReadAsArray(0,0,im_width,im_height) #将数据写成数组,对应栅格矩阵

        del dataset 
        return im_proj,im_geotrans,im_data

    #写文件,以写成tif为例
    def write_img(self,filename,im_proj,im_geotrans,im_data):
        #gdal数据类型包括
        #gdal.GDT_Byte, 
        #gdal .GDT_UInt16, gdal.GDT_Int16, gdal.GDT_UInt32, gdal.GDT_Int32,
        #gdal.GDT_Float32, gdal.GDT_Float64

        #判断栅格数据的数据类型
        if 'int8' in im_data.dtype.name:
            datatype = gdal.GDT_Byte
        elif 'int16' in im_data.dtype.name:
            datatype = gdal.GDT_UInt16
        else:
            datatype = gdal.GDT_Float32

        #判读数组维数
        if len(im_data.shape) == 3:
            im_bands, im_height, im_width = im_data.shape
        else:
            im_bands, (im_height, im_width) = 1,im_data.shape 

        #创建文件
        driver = gdal.GetDriverByName("GTiff")            #数据类型必须有,因为要计算需要多大内存空间
        dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)

        dataset.SetGeoTransform(im_geotrans)              #写入仿射变换参数
        dataset.SetProjection(im_proj)                    #写入投影

        if im_bands == 1:
            dataset.GetRasterBand(1).WriteArray(im_data)  #写入数组数据
        else:
            for i in range(im_bands):
                dataset.GetRasterBand(i+1).WriteArray(im_data[i])

        del dataset

if __name__ == "__main__":
    os.chdir(r'E:/data')                        #切换路径到待处理图像所在文件夹
    proj,geotrans,data = GRID().read_img('GF2_PMS1_E116.1_N39.7_20180322_L1A0003077233-MSS1_ORTHO_MS.tif')        #读数据
    print(proj)
    print(geotrans)
    #print(data)
    print(data.shape)
    channel,width,height = data.shape
    for i in range(width//256):#切割成256*256小图
    	for j in range(height//256):
    		cur_image = data[:,i*256:(i+1)*256,j*256:(j+1)*256]
    		GRID().write_img('E:/data/raw1/{}_{}.tif'.format(i,j),proj,geotrans,cur_image) ##写数据

主要参考自:

https://blog.csdn.net/vonuo/article/details/74783291

 

11.17补充:

tif转png/jpg代码:

import os
from osgeo import gdal

open_path = "D:/segmentation/datasets/tif/"
save_path = "D:/segmentation/datasets/png/"

images = os.listdir(open_path)
for image in images:
    im=gdal.Open(os.path.join(open_path,image))
    driver=gdal.GetDriverByName('PNG')
    dst_ds = driver.CreateCopy(os.path.join(save_path,image.split('.')[0]+".png"), im)
    

 

参考:

https://www.jianshu.com/p/5d183afd4458

https://www.osgeo.cn/pygis/gdal-gdalcreate.html

https://gis.stackexchange.com/questions/132298/gdal-c-api-how-to-create-png-or-jpeg-from-scratch/136903

 

### Python GDAL TIFF到PNG换及像切片处理 #### 安装GDAL 为了确保能够顺利操作TIFF文件将其换为PNG格式,建议通过Conda环境来安装`gdal`[^3]。 ```bash conda install gdal ``` 这一步骤可以有效避免因依赖项缺失而导致的各种错误。 #### 单张TIFF至PNG换函数定义 对于单个带有特定波段顺序(如红绿蓝近红外)的TIFF影像向PNG变的过程可以通过如下方法实现: ```python from osgeo import gdal def RGBNir_tiftoRGB_PNG(): options = gdal.TranslateOptions(format='PNG', bandList=[4, 3, 2]) gdal.Translate('RGB.png', 'GF.tif', options=options) ``` 上述代码片段展示了如何指定要提取的波段列表将结果保存为PNG格式文件[^1]。 #### 批量TIFFPNG脚本编写 当面对多个TIFF文件时,则可采用循环遍历目录内所有`.tif`结尾的文件,逐一应用换逻辑。这里给出一个简单的例子用于说明这一过程: ```python import os from osgeo import gdal def TIFToPNG(tifDir_path, pngDir_path): for fileName in os.listdir(tifDir_path): if fileName.endswith(".tif"): ds = gdal.Open(os.path.join(tifDir_path, fileName)) driver = gdal.GetDriverByName('PNG') outputPath = os.path.join(pngDir_path, f"{os.path.splitext(fileName)[0]}.png") driver.CreateCopy(outputPath, ds) print(f"已生成:{outputPath}") ``` 此部分实现了从给定路径读取所有的TIF文件,将它们逐个化为对应的PNG版本存储于另一指定位置[^2]。 #### 像切片功能扩展 针对遥感数据而言,在完成基本的格式换之后往往还需要进一步对其进行分割以便后续分析或展示用途。虽然原始提供的资料里未涉及具体的切片算法,但是基于GDAL工具集完全可以构建一套简易而有效的解决方案。下面是一个简单示例用来创建固定大小的小块: ```python def tile_image(input_file, output_dir, width=256, height=256): dataset = gdal.Open(input_file) bands = [] for i in range(dataset.RasterCount): bands.append(dataset.GetRasterBand(i + 1)) xsize = bands[0].XSize ysize = bands[0].YSize for i in range(0, xsize, width): for j in range(0, ysize, height): out_band_data = [] for k in range(len(bands)): data = bands[k].ReadAsArray(i, j, min(width, xsize-i), min(height, ysize-j)) out_band_data.append(data) # 创建新的GeoTIFF对象作为临时载体 mem_drv = gdal.GetDriverByName('MEM') temp_ds = mem_drv.Create('', min(width, xsize-i), min(height, ysize-j), len(out_band_data), gdal.GDT_Byte) for idx, array in enumerate(out_band_data): temp_ds.GetRasterBand(idx+1).WriteArray(array) # 将内存中的Tile写入磁盘上的PNG文件 out_filename = f'{output_dir}/tile_{i}_{j}.png' gdal.Translate(out_filename, temp_ds, format="PNG") del temp_ds # 清理资源 del dataset ``` 该函数接收输入像路径以及输出目标文件夹名参数,同时还允许自定义每一片子区域的高度宽度,默认设置为256像素×256像素。它会按照设定尺寸切割整个大把每一个小方格另存为独立的PNG文档。
评论 44
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值