拉格朗日乘子法

最优化基本知识这里就不赘述了,详情可以参考个种最优化书籍,这篇博客主要是帮助回忆优化应用中较常用的方法。

一般情况下,最优化问题会碰到一下三种情况:1. 无约束, 2. 等式约束  3. 不等式约束。对于无约束情况,只要将优化目标对于变量求导,并令其等于0即可,我们主要讨论第二种情况。

设目标函数为f(x),约束条件为h_k(x) :

                                                               

一种方法是消元法,也就是通过等式约束变换,用一部分变量来表示另一部分变量并代入f(x),以此达到消除等式约束的做法。这个方法有局限性,因为要做到消元有时很麻烦,甚至是不可行的。举个例子,f(x) = xyzh(x) = x^2 + y^2 + z^2 -1,那么该处要做消元法的话需要用x和y表示z,这里的变换就比较繁琐,如果是多个等式约束会更加麻烦。下面介绍拉格朗日法,定义拉格朗日函数:

                                                               

此处,\lambda是我们引入的和等式约束数目相等的参数。原问题的求解可以转化为求解方程组:

                                                                  

拉格朗日法的直观解释

举一个二维的例子,

                                                                      min \quad z = f(x,y) \\ s.t. \quad g(x,y) =c

 这里画出z=f(x,y)的登高线图像

                                              

绿色的线即为约束方程,我们要求取的点一定是在绿线上的,由图像可见,在该点g(x,y) = c 和 f(x,y)等一条登高线是相切的。所以,我们可以得出:∇(f(x,y) - d)=λ(∇g(x,y) - C) 。变换一下形式我们发现这就是拉格朗日解法。值得注意的是,该方法得到解只是原问题的必要而非充分条件。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值